
Wide & Deep Learning for Recommender Systems

Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan Anil,

Zakaria Haque, Lichan Hong, Vihan Jain, Xiaobing Liu, Hemal Shah
Google Inc.

∗

ABSTRACT
Generalized linear models with nonlinear feature transfor-
mations are widely used for large-scale regression and clas-
sification problems with sparse inputs. Memorization of fea-
ture interactions through a wide set of cross-product feature
transformations are effective and interpretable, while gener-
alization requires more feature engineering effort. With less
feature engineering, deep neural networks can generalize bet-
ter to unseen feature combinations through low-dimensional
dense embeddings learned for the sparse features. However,
deep neural networks with embeddings can over-generalize
and recommend less relevant items when the user-item inter-
actions are sparse and high-rank. In this paper, we present
Wide & Deep learning—jointly trained wide linear models
and deep neural networks—to combine the benefits of mem-
orization and generalization for recommender systems. We
productionized and evaluated the system on Google Play,
a commercial mobile app store with over one billion active
users and over one million apps. Online experiment results
show that Wide & Deep significantly increased app acquisi-
tions compared with wide-only and deep-only models. We
have also open-sourced our implementation in TensorFlow.

CCS Concepts
•Computing methodologies→Machine learning; Neu-
ral networks; Supervised learning; •Information systems
→ Recommender systems;

Keywords
Wide & Deep Learning, Recommender Systems.

1. INTRODUCTION
A recommender system can be viewed as a search ranking

system, where the input query is a set of user and contextual
information, and the output is a ranked list of items. Given
a query, the recommendation task is to find the relevant
items in a database and then rank the items based on certain
objectives, such as clicks or purchases.

One challenge in recommender systems, similar to the gen-
eral search ranking problem, is to achieve both memorization
and generalization. Memorization can be loosely defined as
learning the frequent co-occurrence of items or features and
exploiting the correlation available in the historical data.
Generalization, on the other hand, is based on transitivity
of correlation and explores new feature combinations that

∗Corresponding author: hengtze@google.com

have never or rarely occurred in the past. Recommenda-
tions based on memorization are usually more topical and
directly relevant to the items on which users have already
performed actions. Compared with memorization, general-
ization tends to improve the diversity of the recommended
items. In this paper, we focus on the apps recommendation
problem for the Google Play store, but the approach should
apply to generic recommender systems.

For massive-scale online recommendation and ranking sys-
tems in an industrial setting, generalized linear models such
as logistic regression are widely used because they are sim-
ple, scalable and interpretable. The models are often trained
on binarized sparse features with one-hot encoding. E.g., the
binary feature “user_installed_app=netflix” has value 1
if the user installed Netflix. Memorization can be achieved
effectively using cross-product transformations over sparse
features, such as AND(user_installed_app=netflix, impres-
sion_app=pandora”), whose value is 1 if the user installed
Netflix and then is later shown Pandora. This explains how
the co-occurrence of a feature pair correlates with the target
label. Generalization can be added by using features that are
less granular, such as AND(user_installed_category=video,
impression_category=music), but manual feature engineer-
ing is often required. One limitation of cross-product trans-
formations is that they do not generalize to query-item fea-
ture pairs that have not appeared in the training data.

Embedding-based models, such as factorization machines
[5] or deep neural networks, can generalize to previously un-
seen query-item feature pairs by learning a low-dimensional
dense embedding vector for each query and item feature,
with less burden of feature engineering. However, it is dif-
ficult to learn effective low-dimensional representations for
queries and items when the underlying query-item matrix is
sparse and high-rank, such as users with specific preferences
or niche items with a narrow appeal. In such cases, there
should be no interactions between most query-item pairs,
but dense embeddings will lead to nonzero predictions for all
query-item pairs, and thus can over-generalize and make less
relevant recommendations. On the other hand, linear mod-
els with cross-product feature transformations can memorize
these “exception rules” with much fewer parameters.

In this paper, we present the Wide & Deep learning frame-
work to achieve both memorization and generalization in one
model, by jointly training a linear model component and a
neural network component as shown in Figure 1.

The main contributions of the paper include:

• The Wide & Deep learning framework for jointly train-
ing feed-forward neural networks with embeddings and

ar
X

iv
:1

60
6.

07
79

2v
1

 [
cs

.L
G

]
 2

4
Ju

n
20

16

Wide Models Deep ModelsWide & Deep Models

Hidden Layers

Sparse Features

Output Units

Dense
Embeddings

Figure 1: The spectrum of Wide & Deep models.

linear model with feature transformations for generic
recommender systems with sparse inputs.

• The implementation and evaluation of the Wide &
Deep recommender system productionized on Google
Play, a mobile app store with over one billion active
users and over one million apps.

• We have open-sourced our implementation along with
a high-level API in TensorFlow1.

While the idea is simple, we show that the Wide & Deep
framework significantly improves the app acquisition rate
on the mobile app store, while satisfying the training and
serving speed requirements.

2. RECOMMENDER SYSTEM OVERVIEW
An overview of the app recommender system is shown

in Figure 2. A query, which can include various user and
contextual features, is generated when a user visits the app
store. The recommender system returns a list of apps (also
referred to as impressions) on which users can perform cer-
tain actions such as clicks or purchases. These user actions,
along with the queries and impressions, are recorded in the
logs as the training data for the learner.

Since there are over a million apps in the database, it is
intractable to exhaustively score every app for every query
within the serving latency requirements (often O(10) mil-
liseconds). Therefore, the first step upon receiving a query
is retrieval. The retrieval system returns a short list of items
that best match the query using various signals, usually a
combination of machine-learned models and human-defined
rules. After reducing the candidate pool, the ranking sys-
tem ranks all items by their scores. The scores are usually
P (y|x), the probability of a user action label y given the
features x, including user features (e.g., country, language,
demographics), contextual features (e.g., device, hour of the
day, day of the week), and impression features (e.g., app age,
historical statistics of an app). In this paper, we focus on the
ranking model using the Wide & Deep learning framework.

3. WIDE & DEEP LEARNING

3.1 The Wide Component
The wide component is a generalized linear model of the

form y = wTx + b, as illustrated in Figure 1 (left). y is the
prediction, x = [x1, x2, ..., xd] is a vector of d features, w =
[w1, w2, ..., wd] are the model parameters and b is the bias.
The feature set includes raw input features and transformed

1See Wide & Deep Tutorial on http://tensorflow.org.

Item 1
Item 2
Item 3
...

DatabaseQuery

Items

Learner

Model

Ranked
O(10) items

LogsUser Actions

Retrieval

O(100) items

Ranking

Recommendation System

All items

Figure 2: Overview of the recommender system.

features. One of the most important transformations is the
cross-product transformation, which is defined as:

φk(x) =

d∏
i=1

x
cki
i cki ∈ {0, 1} (1)

where cki is a boolean variable that is 1 if the i-th fea-
ture is part of the k-th transformation φk, and 0 otherwise.
For binary features, a cross-product transformation (e.g.,
“AND(gender=female, language=en)”) is 1 if and only if the
constituent features (“gender=female” and “language=en”)
are all 1, and 0 otherwise. This captures the interactions
between the binary features, and adds nonlinearity to the
generalized linear model.

3.2 The Deep Component
The deep component is a feed-forward neural network, as

shown in Figure 1 (right). For categorical features, the orig-
inal inputs are feature strings (e.g., “language=en”). Each
of these sparse, high-dimensional categorical features are
first converted into a low-dimensional and dense real-valued
vector, often referred to as an embedding vector. The di-
mensionality of the embeddings are usually on the order of
O(10) to O(100). The embedding vectors are initialized ran-
domly and then the values are trained to minimize the final
loss function during model training. These low-dimensional
dense embedding vectors are then fed into the hidden layers
of a neural network in the forward pass. Specifically, each
hidden layer performs the following computation:

a(l+1) = f(W (l)a(l) + b(l)) (2)

where l is the layer number and f is the activation function,
often rectified linear units (ReLUs). a(l), b(l), and W (l) are
the activations, bias, and model weights at l-th layer.

3.3 Joint Training of Wide & Deep Model
The wide component and deep component are combined

using a weighted sum of their output log odds as the pre-

User Data

App
Impression

Data

Training Data
Generation

Vocabulary
Generator

Model
Trainer Model Verifier

Model Servers

Model Serving

Apps
Recommendation

Engine

Previous Models
 Data Generation Model Training

Figure 3: Apps recommendation pipeline overview.

diction, which is then fed to one common logistic loss func-
tion for joint training. Note that there is a distinction be-
tween joint training and ensemble. In an ensemble, indi-
vidual models are trained separately without knowing each
other, and their predictions are combined only at inference
time but not at training time. In contrast, joint training
optimizes all parameters simultaneously by taking both the
wide and deep part as well as the weights of their sum into
account at training time. There are implications on model
size too: For an ensemble, since the training is disjoint, each
individual model size usually needs to be larger (e.g., with
more features and transformations) to achieve reasonable
accuracy for an ensemble to work. In comparison, for joint
training the wide part only needs to complement the weak-
nesses of the deep part with a small number of cross-product
feature transformations, rather than a full-size wide model.

Joint training of a Wide & Deep Model is done by back-
propagating the gradients from the output to both the wide
and deep part of the model simultaneously using mini-batch
stochastic optimization. In the experiments, we used Follow-
the-regularized-leader (FTRL) algorithm [3] with L1 regu-
larization as the optimizer for the wide part of the model,
and AdaGrad [1] for the deep part.

The combined model is illustrated in Figure 1 (center).
For a logistic regression problem, the model’s prediction is:

P (Y = 1|x) = σ(wT
wide[x, φ(x)] + wT

deepa
(lf) + b) (3)

where Y is the binary class label, σ(·) is the sigmoid func-
tion, φ(x) are the cross product transformations of the orig-
inal features x, and b is the bias term. wwide is the vector of
all wide model weights, and wdeep are the weights applied

on the final activations a(lf).

4. SYSTEM IMPLEMENTATION
The implementation of the apps recommendation pipeline

consists of three stages: data generation, model training,
and model serving as shown in Figure 3.

4.1 Data Generation
In this stage, user and app impression data within a period

of time are used to generate training data. Each example
corresponds to one impression. The label is app acquisition:
1 if the impressed app was installed, and 0 otherwise.

Vocabularies, which are tables mapping categorical fea-
ture strings to integer IDs, are also generated in this stage.
The system computes the ID space for all the string features
that occurred more than a minimum number of times. Con-
tinuous real-valued features are normalized to [0, 1] by map-
ping a feature value x to its cumulative distribution function
P (X ≤ x), divided into nq quantiles. The normalized value
is i−1

nq−1
for values in the i-th quantiles. Quantile boundaries

ReLU (1024)

Logistic Loss

Embeddings

ReLU (512)

ReLU (256)

User Installed
App

Impression
App

User
Demographics

Device
Class

...Age #App
Installs

#Engagement
sessions

...

Cross Product
Transformation

Embeddings Embeddings Embeddings

Concatenated Embeddings (~1200 dimensions)

Continuous Features Categorical Features

Figure 4: Wide & Deep model structure for apps
recommendation.

are computed during data generation.

4.2 Model Training
The model structure we used in the experiment is shown in

Figure 4. During training, our input layer takes in training
data and vocabularies and generate sparse and dense fea-
tures together with a label. The wide component consists
of the cross-product transformation of user installed apps
and impression apps. For the deep part of the model, A 32-
dimensional embedding vector is learned for each categorical
feature. We concatenate all the embeddings together with
the dense features, resulting in a dense vector of approxi-
mately 1200 dimensions. The concatenated vector is then
fed into 3 ReLU layers, and finally the logistic output unit.

The Wide & Deep models are trained on over 500 billion
examples. Every time a new set of training data arrives,
the model needs to be re-trained. However, retraining from
scratch every time is computationally expensive and delays
the time from data arrival to serving an updated model.
To tackle this challenge, we implemented a warm-starting
system which initializes a new model with the embeddings
and the linear model weights from the previous model.

Before loading the models into the model servers, a dry
run of the model is done to make sure that it does not cause
problems in serving live traffic. We empirically validate the
model quality against the previous model as a sanity check.

4.3 Model Serving
Once the model is trained and verified, we load it into the

model servers. For each request, the servers receive a set
of app candidates from the app retrieval system and user
features to score each app. Then, the apps are ranked from
the highest scores to the lowest, and we show the apps to
the users in this order. The scores are calculated by running
a forward inference pass over the Wide & Deep model.

In order to serve each request on the order of 10 ms, we
optimized the performance using multithreading parallelism
by running smaller batches in parallel, instead of scoring all
candidate apps in a single batch inference step.

5. EXPERIMENT RESULTS
To evaluate the effectiveness of Wide & Deep learning in

a real-world recommender system, we ran live experiments
and evaluated the system in a couple of aspects: app acqui-
sitions and serving performance.

5.1 App Acquisitions
We conducted live online experiments in an A/B test-

ing framework for 3 weeks. For the control group, 1% of

Table 1: Offline & online metrics of different models.
Online Acquisition Gain is relative to the control.

Model Offline AUC Online Acquisition Gain

Wide (control) 0.726 0%

Deep 0.722 +2.9%

Wide & Deep 0.728 +3.9%

users were randomly selected and presented with recom-
mendations generated by the previous version of ranking
model, which is a highly-optimized wide-only logistic regres-
sion model with rich cross-product feature transformations.
For the experiment group, 1% of users were presented with
recommendations generated by the Wide & Deep model,
trained with the same set of features. As shown in Table 1,
Wide & Deep model improved the app acquisition rate on
the main landing page of the app store by +3.9% relative to
the control group (statistically significant). The results were
also compared with another 1% group using only the deep
part of the model with the same features and neural network
structure, and the Wide & Deep mode had +1% gain on top
of the deep-only model (statistically significant).

Besides online experiments, we also show the Area Under
Receiver Operator Characteristic Curve (AUC) on a holdout
set offline. While Wide & Deep has a slightly higher offline
AUC, the impact is more significant on online traffic. One
possible reason is that the impressions and labels in offline
data sets are fixed, whereas the online system can generate
new exploratory recommendations by blending generaliza-
tion with memorization, and learn from new user responses.

5.2 Serving Performance
Serving with high throughput and low latency is challeng-

ing with the high level of traffic faced by our commercial
mobile app store. At peak traffic, our recommender servers
score over 10 million apps per second. With single threading,
scoring all candidates in a single batch takes 31 ms. We im-
plemented multithreading and split each batch into smaller
sizes, which significantly reduced the client-side latency to
14 ms (including serving overhead) as shown in Table 2.

6. RELATED WORK
The idea of combining wide linear models with cross-

product feature transformations and deep neural networks
with dense embeddings is inspired by previous work, such as
factorization machines [5] which add generalization to linear
models by factorizing the interactions between two variables
as a dot product between two low-dimensional embedding
vectors. In this paper, we expanded the model capacity by
learning highly nonlinear interactions between embeddings
via neural networks instead of dot products.

In language models, joint training of recurrent neural net-
works (RNNs) and maximum entropy models with n-gram
features has been proposed to significantly reduce the RNN
complexity (e.g., hidden layer sizes) by learning direct weights
between inputs and outputs [4]. In computer vision, deep
residual learning [2] has been used to reduce the difficulty of
training deeper models and improve accuracy with shortcut
connections which skip one or more layers. Joint training of
neural networks with graphical models has also been applied
to human pose estimation from images [6]. In this work we
explored the joint training of feed-forward neural networks

Table 2: Serving latency vs. batch size and threads.

Batch size Number of Threads Serving Latency (ms)

200 1 31

100 2 17

50 4 14

and linear models, with direct connections between sparse
features and the output unit, for generic recommendation
and ranking problems with sparse input data.

In the recommender systems literature, collaborative deep
learning has been explored by coupling deep learning for
content information and collaborative filtering (CF) for the
ratings matrix [7]. There has also been previous work on
mobile app recommender systems, such as AppJoy which
used CF on users’ app usage records [8]. Different from the
CF-based or content-based approaches in the previous work,
we jointly train Wide & Deep models on user and impression
data for app recommender systems.

7. CONCLUSION
Memorization and generalization are both important for

recommender systems. Wide linear models can effectively
memorize sparse feature interactions using cross-product fea-
ture transformations, while deep neural networks can gener-
alize to previously unseen feature interactions through low-
dimensional embeddings. We presented the Wide & Deep
learning framework to combine the strengths of both types
of model. We productionized and evaluated the framework
on the recommender system of Google Play, a massive-scale
commercial app store. Online experiment results showed
that the Wide & Deep model led to significant improvement
on app acquisitions over wide-only and deep-only models.

8. REFERENCES
[1] J. Duchi, E. Hazan, and Y. Singer. Adaptive

subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research,
12:2121–2159, July 2011.

[2] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition. Proc. IEEE Conference
on Computer Vision and Pattern Recognition, 2016.

[3] H. B. McMahan. Follow-the-regularized-leader and
mirror descent: Equivalence theorems and l1
regularization. In Proc. AISTATS, 2011.

[4] T. Mikolov, A. Deoras, D. Povey, L. Burget, and J. H.
Cernocky. Strategies for training large scale neural
network language models. In IEEE Automatic Speech
Recognition & Understanding Workshop, 2011.

[5] S. Rendle. Factorization machines with libFM. ACM
Trans. Intell. Syst. Technol., 3(3):57:1–57:22, May 2012.

[6] J. J. Tompson, A. Jain, Y. LeCun, and C. Bregler. Joint
training of a convolutional network and a graphical
model for human pose estimation. In Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, and K. Q.
Weinberger, editors, NIPS, pages 1799–1807. 2014.

[7] H. Wang, N. Wang, and D.-Y. Yeung. Collaborative
deep learning for recommender systems. In Proc. KDD,
pages 1235–1244, 2015.

[8] B. Yan and G. Chen. AppJoy: Personalized mobile
application discovery. In MobiSys, pages 113–126, 2011.

	1 Introduction
	2 Recommender System Overview
	3 Wide & Deep Learning
	3.1 The Wide Component
	3.2 The Deep Component
	3.3 Joint Training of Wide & Deep Model

	4 System Implementation
	4.1 Data Generation
	4.2 Model Training
	4.3 Model Serving

	5 Experiment Results
	5.1 App Acquisitions
	5.2 Serving Performance

	6 Related Work
	7 Conclusion
	8 References

