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ABSTRACT

Feature engineering has been the key to the success of many pre-

diction models. However, the process is nontrivial and o�en re-

quires manual feature engineering or exhaustive searching. DNNs

are able to automatically learn feature interactions; however, they

generate all the interactions implicitly, and are not necessarily ef-

ficient in learning all types of cross features. In this paper, we pro-

pose the Deep & Cross Network (DCN) which keeps the benefits of

a DNNmodel, and beyond that, it introduces a novel cross network

that is more efficient in learning certain bounded-degree feature

interactions. In particular, DCN explicitly applies feature crossing

at each layer, requires no manual feature engineering, and adds

negligible extra complexity to the DNN model. Our experimental

results have demonstrated its superiority over the state-of-art al-

gorithms on the CTR prediction dataset and dense classification

dataset, in terms of both model accuracy and memory usage.

1 INTRODUCTION

Click-through rate (CTR) prediction is a large-scale problem that is

essential to multi-billion dollar online advertising industry. In the

advertising industry, advertisers pay publishers to display their ads

on publishers’ sites. One popular payment model is the cost-per-

click (CPC) model, where advertisers are charged only when a click

occurs. As a consequence, a publisher’s revenue relies heavily on

the ability to predict CTR accurately.

Identifying frequently predictive features and at the same time

exploring unseen or rare cross features is the key to making good

predictions. However, data for Web-scale recommender systems

is mostly discrete and categorical, leading to a large and sparse

feature space that is challenging for feature exploration. �is has

limited most large-scale systems to linear models such as logistic

regression.

Linear models [3] are simple, interpretable and easy to scale;

however, they are limited in their expressive power. Cross features,

on the other hand, have been shown to be significant in improv-

ing the models’ expressiveness. Unfortunately, it o�en requires

manual feature engineering or exhaustive search to identify such

features; moreover, generalizing to unseen feature interactions is

difficult.

In this paper, we aim to avoid task-specific feature engineering

by introducing a novel neural network structure – a cross network

– that explicitly applies feature crossing in an automatic fashion.

�e cross network consists of multiple layers, where the highest-

degree of interactions are provably determined by layer depth. Each

layer produces higher-order interactions based on existing ones,

and keeps the interactions from previous layers. We train the cross

network jointly with a deep neural network (DNN) [10, 14]. DNN

has the promise to capture very complex interactions across fea-

tures; however, compared to our cross network it requires nearly

an order of magnitude more parameters, is unable to form cross

features explicitly, and may fail to efficiently learn some types of

feature interactions. Jointly training the cross and DNN compo-

nents together, however, efficiently captures predictive feature in-

teractions, and delivers state-of-the-art performance on the Criteo

CTR dataset.

1.1 Related Work

Due to the dramatic increase in size and dimensionality of datasets,

a number of methods have been proposed to avoid extensive task-

specific feature engineering, mostly based on embedding techniques

and neural networks.

Factorization machines (FMs) [11, 12] project sparse features

onto low-dimensional dense vectors and learn feature interactions

from vector inner products. Field-aware factorization machines

(FFMs) [7, 8] further allow each feature to learn several vectors

where each vector is associated with a field. Regre�ably, the shal-

low structures of FMs and FFMs limit their representative power.

�ere have been work extending FMs to higher orders [1, 18], but

one downside lies in their large number of parameters which yields

undesirable computational cost. Deep neural networks (DNN) are

able to learn non-trivial high-degree feature interactions due to

embedding vectors and nonlinear activation functions. �e recent

success of the Residual Network [5] has enabled training of very

deep networks. Deep Crossing [15] extends residual networks and

achieves automatic feature learning by stacking all types of inputs.

�e remarkable success of deep learning has elicited theoreti-

cal analyses on its representative power. �ere has been research

[16, 17] showing that DNNs are able to approximate an arbitrary

function under certain smoothness assumptions to an arbitrary

accuracy, given sufficiently many hidden units or hidden layers.

Moreover, in practice, it has been found that DNNs work well with

a feasible number of parameters. One key reason is that most func-

tions of practical interest are not arbitrary.
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Yet one remaining question is whether DNNs are indeed the

most efficient ones in representing such functions of practical in-

terest. In the Kaggle1 competition, the manually cra�ed features

in many winning solutions are low-degree, in an explicit format

and effective. �e features learned by DNNs, on the other hand,

are implicit and highly nonlinear. �is has shed light on designing

a model that is able to learn bounded-degree feature interactions

more efficiently and explicitly than a universal DNN.

�e wide-and-deep [4] is a model in this spirit. It takes cross

features as inputs to a linear model, and jointly trains the linear

model with a DNN model. However, the success of wide-and-deep

hinges on a proper choice of cross features, an exponential problem

for which there is yet no clear efficient method.

1.2 Main Contributions

In this paper, we propose the Deep & Cross Network (DCN) model

that enablesWeb-scale automatic feature learningwith both sparse

and dense inputs. DCN efficiently captures effective feature inter-

actions of bounded degrees, learns highly nonlinear interactions,

requires no manual feature engineering or exhaustive searching,

and has low computational cost.

�e main contributions of the paper include:

• We propose a novel cross network that explicitly applies feature

crossing at each layer, efficiently learns predictive cross features

of boundeddegrees, and requires nomanual feature engineering

or exhaustive searching.

• �e cross network is simple yet effective. By design, the highest

polynomial degree increases at each layer and is determined by

layer depth. �e network consists of all the cross terms of degree

up to the highest, with their coefficients all different.

• �e cross network is memory efficient, and easy to implement.

• Our experimental results have demonstrated that with a cross

network, DCN has lower logloss than a DNN with nearly an

order of magnitude fewer number of parameters.

�e paper is organized as follows: Section 2 describes the archi-

tecture of the Deep & Cross Network. Section 3 analyzes the cross

network in detail. Section 4 shows the experimental results.

2 DEEP & CROSS NETWORK (DCN)

In this section we describe the architecture of Deep & Cross Net-

work (DCN) models. A DCN model starts with an embedding and

stacking layer, followed by a cross network and a deep network in

parallel. �ese in turn are followed by a final combination layer

which combines the outputs from the two networks. �e complete

DCN model is depicted in Figure 1.

2.1 Embedding and Stacking Layer

We consider input data with sparse and dense features. In Web-

scale recommender systems such as CTR prediction, the inputs are

mostly categorical features, e.g. "country=usa". Such features are

o�en encoded as one-hot vectors e.g. "[0,1,0]"; however, this

o�en leads to excessively high-dimensional feature spaces for large

vocabularies.

1h�ps://www.kaggle.com/
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Figure 1: �e Deep & Cross Network

To reduce the dimensionality, we employ an embedding proce-

dure to transform these binary features into dense vectors of real

values (commonly called embedding vectors):

xembed,i =Wembed,ixi , (1)

where xembed,i is the embedding vector, xi is the binary input in

the i-th category, and Wembed,i ∈ Rne×nv is the corresponding

embedding matrix that will be optimized together with other pa-

rameters in the network, and ne ,nv are the embedding size and

vocabulary size, respectively.

In the end, we stack the embedding vectors, along with the nor-

malized dense features xdense, into one vector:

x0 =
[
xTembed,1, . . . , x

T
embed,k

, xTdense

]
, (2)

and feed x0 to the network.

2.2 Cross Network

�e key idea of our novel cross network is to apply explicit feature

crossing in an efficient way. �e cross network is composed of

cross layers, with each layer having the following formula:

xl+1 = x0x
T
l
wl + bl + xl = f (xl ,wl , bl ) + xl , (3)

where xl , xl+1 ∈ Rd are column vectors denoting the outputs

from the l-th and (l + 1)-th cross layers, respectively; wl , bl ∈ R
d

are the weight and bias parameters of the l-th layer. Each cross

layer adds back its input a�er a feature crossing f , and the map-

ping function f : Rd 7→ Rd fits the residual of xl+1 − xl . A visual-

ization of one cross layer is shown in Figure 2.

High-degree Interaction Across Features. �e special struc-

ture of the cross network causes the degree of cross features to

grow with layer depth. �e highest polynomial degree (in terms of
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Figure 2: Visualization of a cross layer.

input x0) for an l-layer cross network is l + 1. In fact, the cross net-

work comprises all the cross terms xα1

1 x
α2

2 . . . x
αd
d

of degree from

1 to l + 1. Detailed analysis is in Section 3.

Complexity Analysis. Let Lc denote the number of cross lay-

ers, and d denote the input dimension. �en, the number of param-

eters involved in the cross network is

d × Lc × 2.

�e time and space complexity of a cross network are linear in

input dimension. �erefore, a cross network introduces negligible

complexity compared to its deep counterpart, keeping the overall

complexity for DCN at the same level as that of a traditional DNN.

�is efficiency benefits from the rank-one property of x0x
T
l
, which

enables us to generate all cross termswithout computing or storing

the entire matrix.

�e small number of parameters of the cross network has lim-

ited the model capacity. To capture highly nonlinear interactions,

we introduce a deep network in parallel.

2.3 Deep Network

�e deep network is a fully-connected feed-forward neural net-

work, with each deep layer having the following formula:

hl+1 = f (Wlhl + bl ), (4)

where hl ∈ Rnl ,hl+1 ∈ Rnl+1 are the l-th and (l + 1)-th hidden

layer, respectively;Wl ∈ Rnl+1×nl , bl ∈ Rnl+1 are parameters for

the l-th deep layer; and f (·) is the ReLU function.

Complexity Analysis. For simplicity, we assume all the deep

layers are of equal size. Let Ld denote the number of deep layers

andm denote the deep layer size. �en, the number of parameters

in the deep network is

d ×m +m + (m2
+m) × (Ld − 1).

2.4 Combination Layer

�ecombination layer concatenates the outputs from two networks

and feed the concatenated vector into a standard logits layer.

�e following is the formula for a two-class classification prob-

lem:

p = σ
(
[xTL1 ,h

T
L2
]wlogits

)
, (5)

where xL1 ∈ R
d
,hL2 ∈ R

m are the outputs from the cross network

and deep network, respectively, wlogits ∈ R(d+m) is the weight

vector for the combination layer, and σ (x) = 1/(1 + exp(−x)).

�e loss function is the log loss alongwith a regularization term,

loss = −
1

N

N∑

i=1

yi log(pi ) + (1 − yi ) log(1 − pi ) + λ
∑

l

‖wl ‖
2
, (6)

wherepi ’s are the probabilities computed from Equation 5, yi ’s are

the true labels, N is the total number of inputs, and λ is the L2
regularization parameter.

We jointly train both networks, as this allows each individual

network to be aware of the others during the training.

3 CROSS NETWORK ANALYSIS

In this section, we analyze the cross network of DCN for the pur-

pose of understanding its effectiveness. We offer three perspec-

tives: polynomial approximation, generalization to FMs, and effi-

cient projection. For simplicity, we assume bi = 0.

Notations. Let the i-th element in wj be w
(i )
j . For multi-index

α = [α1, · · · ,αd ] ∈ Nd and x = [x1, · · · , xd ] ∈ Rd , we define

|α | =
∑d
i=1 αi .

Terminology.�edegree of a cross term (monomial) xα1

1 x
α2

2 · · · x
αd
d

is defined by |α |. �e degree of a polynomial is defined by the high-

est degree of its terms.

3.1 Polynomial Approximation

By the Weierstrass approximation theorem [13], any function un-

der certain smoothness assumption can be approximated by a poly-

nomial to an arbitrary accuracy. �erefore, we analyze the cross

network from the perspective of polynomial approximation. In

particular, the cross network approximates the polynomial class

of the same degree in a way that is efficient, expressive and gener-

alizes be�er to real-world datasets.

We study in detail the approximation of a cross network to the

polynomial class of the same degree. Let us denote by Pn (x) the

multivariate polynomial class of degree n:

Pn (x) =

{∑

α

wα x
α1

1 x
α2

2 . . . x
αd
d

���� 0 ≤ |α | ≤ n,α ∈ Nd
}
. (7)

Each polynomial in this class hasO(dn) coefficients. We show that,

with onlyO(d) parameters, the cross network contains all the cross

terms occurring in the polynomial of the same degree, with each

term’s coefficient distinct from each other.

Theorem 3.1. Consider an l-layer cross network with the i + 1-th

layer defined as xi+1 = x0x
T
i wi + xi . Let the input to the network

be x0 = [x1, x2, . . . ,xd ]
T , the output be дl (x0) = xT

l
wl , and the

parameters bewi , bi ∈ R
d . �en, themultivariate polynomialдl (x0)

reproduces polynomials in the following class:
{∑

α

cα (w0, . . . ,wl )x
α1

1 x
α2

2 . . . x
αd
d

���� 0 ≤ |α | ≤ l + 1,α ∈ Nd
}
,

where cα = Mα

∑
i∈Bα

∑
j∈Pα

∏ |α |

k=1
w
(jk )
ik

, Mα is a constant inde-

pendent of wi ’s, i = [i1, . . . , i |α |] and j = [j1, . . . , j |α |] are multi-

indices, Bα =
{
y ∈ {0, 1, · · · , l} |α |

�� yi < yj ∧y |α | = l
}
, and Pα is

the set of all the permutations of the indices (1, · · · , 1
︸   ︷︷   ︸
α1 times

· · ·d, · · · ,d
︸   ︷︷   ︸
αd times

).
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�e proof of �eorem 3.1 is in the Appendix. Let us give an ex-

ample. Consider the coefficient cα forx1x2x3 withα = (1, 1, 1, 0, . . . , 0).

Up to some constant, when l = 2, cα =
∑
i, j,k ∈Pα w

(i )
0 w

(j)
1 w

(k)
2 ;

when l = 3, cα =
∑
i, j,k ∈Pα w

(i )
0 w

(j)
1 w

(k)
3 +w

(i )
0 w

(j)
2 w

(k)
3 +w

(i )
1 w

(j)
2 w

(k)
3 .

3.2 Generalization of FMs

�e cross network shares the spirit of parameter sharing as the FM

model and further extends it to a deeper structure.

In a FM model, feature xi is associated with a weight vector

vi , and the weight of cross term xixj is computed by 〈vi , vj 〉. In

DCN, xi is associated with scalars {w
(i )
k
}l
k=1

, and the weight of

xixj is the multiplications of parameters from the sets {w
(i )
k
}l
k=0

and {w
(j)
k

}l
k=0

. Bothmodels have each feature learned some param-

eters independent from other features, and the weight of a cross

term is a certain combination of corresponding parameters.

Parameter sharing not only makes the model more efficient, but

also enables the model to generalize to unseen feature interactions

and bemore robust to noise. For example, take datasets with sparse

features. If two binary features xi and xj rarely or never co-occur

in the training data, i.e., xi , 0 ∧ xj , 0, then the learned weight

of xixj would carry no meaningful information for prediction.

�e FM is a shallow structure and is limited to representing

cross terms of degree 2. DCN, in contrast, is able to construct all the

cross terms x
α1

1 x
α2

2 . . . x
αd
d

with degree |α | bounded by some con-

stant determined by layer depth, as claimed in�eorem 3.1. �ere-

fore, the cross network extends the idea of parameter sharing from

a single layer to multiple layers and high-degree cross-terms. Note

that different from the higher-order FMs, the number of parame-

ters in a cross network only grows linearly with the input dimen-

sion.

3.3 Efficient Projection

Each cross layer projects all the pairwise interactions between x0
and xl , in an efficient manner, back to the input’s dimension.

Consider x̃ ∈ Rd as the input to a cross layer. �e cross layer

first implicitly constructs d2 pairwise interactions xi x̃j , and then

implicitly projects them back to dimension d in a memory-efficient

way. A direct approach, however, comes with a cubic cost.

Our cross layer provides an efficient solution to reduce the cost

to linear in dimension d . Consider xp = x0x̃
Tw. �is is in fact

equivalent to

xTp =
[
x1x̃1 . . . x1x̃d . . . xd x̃1 . . . xd x̃d

]
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(8)

where the row vector contains alld2 pairwise interactions xi x̃j ’s,

the projection matrix has a block diagonal structure with w ∈ Rd

being a column vector.

4 EXPERIMENTAL RESULTS

In this section, we evaluate the performance of DCN on some pop-

ular classification datasets.

4.1 Criteo Display Ads Data

�e Criteo Display Ads2 dataset is for the purpose of predicting

ads click-through rate. It has 13 integer features and 26 categori-

cal features where each category has a high cardinality. For this

dataset, an improvement of 0.001 in logloss is considered as

practically significant. When considering a large user base, a

small improvement in prediction accuracy can potentially lead to

a large increase in a company’s revenue. �e data contains 11 GB

user logs from a period of 7 days (∼41 million records). We used

the data of the first 6 days for training, and randomly split day 7

data into validation and test sets of equal size.

4.2 Implementation Details

DCN is implemented on TensorFlow, we briefly discuss some im-

plementation details for training with DCN.

Data processing and embedding. Real-valued features are normal-

ized by applying a log transform. For categorical features, we em-

bed the features in dense vectors of dimension 6×(category cardinality)1/4.

Concatenating all embeddings results in a vector of dimension 1026.

Optimization.We applied mini-batch stochastic optimization with

Adam optimizer [9]. �e batch size is set at 512. Batch normaliza-

tion [6] was applied to the deep network and gradient clip norm

was set at 100.

Regularization. We used early stopping, as we did not find L2 reg-

ularization or dropout to be effective.

Hyperparameters. We report results based on a grid search over

the number of hidden layers, hidden layer size, initial learning rate

and number of cross layers. �e number of hidden layers ranged

from 2 to 5, with hidden layer sizes from 32 to 1024. For DCN, the

number of cross layers3 is from 1 to 6. �e initial learning rate4

was tuned from 0.0001 to 0.001 with increments of 0.0001. All ex-

periments applied early stopping at training step 150,000, beyond

which overfi�ing started to occur.

4.3 Models for Comparisons

We compare DCN with five models: the DCN model with no cross

network (DNN), logistic regression (LR), Factorization Machines

(FMs), Wide and Deep Model (W&D), and Deep Crossing (DC).

DNN. �e embedding layer, the output layer, and the hyperparam-

eter tuning process are the same as DCN. �e only change from

the DCN model was that there are no cross layers.

LR. We used Sibyl [2]—a large-scale machine-learning system for

distributed logistic regression. �e integer featureswere discretized

on a log scale. �e cross features were selected by a sophisticated

feature selection tool. All of the single features were used.

2h�ps://www.kaggle.com/c/criteo-display-ad-challenge
3More cross layers did not lead to significant improvement, so we restrict ourselves

in a small range for finer tuning.
4Experimentally we observe that for the Criteo dataset, a learning rate larger than
0.001 usually degrades the performance.
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FM. We used an FM-based model with proprietary details.

W&D. Different than DCN, its wide component takes as input raw

sparse features, and relies on exhaustive searching and domain

knowledge to select predictive cross features. We skipped the com-

parison as no good method is known to select cross features.

DC. Compared to DCN, DC does not form explicit cross features. It

mainly relies on stacking and residual units to create implicit cross-

ings. We applied the same embedding (stacking) layer as DCN, fol-

lowed by another ReLu layer to generate input to a sequence of

residual units. �e number of residual units was tuned form 1 to 5,

with input dimension and cross dimension from 100 to 1026.

4.4 Model Performance

In this section, we first list the best performance of different mod-

els in logloss, then we compare DCN with DNN in detail, that is,

we investigate further into the effects introduced by the cross net-

work.

Performance of different models. �e best test logloss of

different models are listed in Table 1. �e optimal hyperparame-

ter se�ings were 2 deep layers of size 1024 and 6 cross layers for

the DCN model, 5 deep layers of size 1024 for the DNN, 5 resid-

ual units with input dimension 424 and cross dimension 537 for

the DC, and 42 cross features for the LR model. �at the best per-

formance was found with the deepest cross architecture suggests

that the higher-order feature interactions from the cross network

are valuable. As we can see, DCN outperforms all the other mod-

els by a large amount. In particular, it outperforms the state-of-art

DNN model but uses only 40% of the memory consumed in DNN.

Table 1: Best test logloss from differentmodels. “DC” is deep

crossing, “DNN” is DCN with no cross layer, “FM” is Factor-

ization Machine based model, “LR” is logistic regression.

Model DCN DC DNN FM LR

Logloss 0.4419 0.4425 0.4428 0.4464 0.4474

For the optimal hyperparameter se�ing of each model, we also

report the mean and standard deviation of the test logloss out of 10

independent runs: DCN: 0.4422 ± 9 × 10−5, DNN: 0.4430 ± 3.7 ×

10−4, DC: 0.4430 ± 4.3 × 10−4. As can be seen, DCN consistently

outperforms other models by a large amount.

Comparisons Between DCN and DNN. Considering that the

cross network only introducesO(d) extra parameters, we compare

DCN to its deep network—a traditional DNN, and present the ex-

perimental results while varying memory budget and loss toler-

ance.

In the following, the loss for a certain number of parameters is

reported as the best validation loss among all the learning rates

and model structures. �e number of parameters in the embed-

ding layer was omi�ed in our calculation as it is identical to both

models.

Table 2 reports the minimal number of parameters needed to

achieve a desired logloss threshold. From Table 2, we see that

DCN is nearly an order of magnitude more memory efficient than

a single DNN, thanks to the cross network which is able to learn

bounded-degree feature interactions more efficiently.

Table 2: #parameters needed to achieve a desired logloss.

Logloss 0.4430 0.4460 0.4470 0.4480

DNN 3.2 × 106 1.5 × 105 1.5 × 105 7.8 × 104

DCN 7.9 × 105 7.3 × 104 3.7 × 104 3.7 × 104

Table 3 compares performance of the neural models subject to

fixed memory budgets. As we can see, DCN consistently outper-

forms DNN. In the small-parameter regime, the number of param-

eters in the cross network is comparable to that in the deep net-

work, and the clear improvement indicates that the cross network

is more efficient in learning effective feature interactions. In the

large-parameter regime, the DNN closes some of the gap; however,

DCN still outperforms DNN by a large amount, suggesting that it

can efficiently learn some types of meaningful feature interactions

that even a huge DNN model cannot.

Table 3: Best logloss achievedwith variousmemory budgets.

#Params 5 × 104 1 × 105 4 × 105 1.1 × 106 2.5 × 106

DNN 0.4480 0.4471 0.4439 0.4433 0.4431

DCN 0.4465 0.4453 0.4432 0.4426 0.4423

We analyze DCN in finer detail by illustrating the effect from

introducing a cross network to a given DNN model. We first com-

pare the best performance of DNN with that of DCN under the

same number of layers and layer size, and then for each se�ing, we

show how the validation logloss changes as more cross layers are

added. Table 4 shows the differences between the DCN and DNN

model in logloss. Under the same experimental se�ing, the best

logloss from the DCN model consistently outperforms that from a

single DNN model of the same structure. �at the improvement is

consistent for all the hyperparameters has mitigated the random-

ness effect from the initialization and stochastic optimization.

Table 4: Differences in the validation logloss (×10−2) be-

tween DCN and DNN. �e DNN model is the DCN model

with the number of cross layers set to 0. Negative values

mean that the DCN outperforms DNN.

#Layers

#Nodes
32 64 128 256 512 1024

2 -0.28 -0.10 -0.16 -0.06 -0.05 -0.08

3 -0.19 -0.10 -0.13 -0.18 -0.07 -0.05

4 -0.12 -0.10 -0.06 -0.09 -0.09 -0.21

5 -0.21 -0.11 -0.13 -0.00 -0.06 -0.02

Figure 3 shows the improvement as we increase the number

of cross layers on randomly selected se�ings. For the deep net-

works in Figure 3, there is a clear improvement when 1 cross layer

5



is added to the model. As more cross layers are introduced, for

some se�ings the logloss continues to decrease, indicating the in-

troduced cross terms are effective in the prediction; whereas for

others the logloss starts to fluctuate and even slightly increase,

which indicates the higher-degree feature interactions introduced

are not helpful.

# cross layers
0 2 4 6

lo
gl

os
s

0.442

0.443

0.444

0.445

0.446

0.447

0.448

0.449

0.45
2 layers, 32 nodes
5 layers, 128 nodes
3 layers, 256 nodes
4 layers, 1024 nodes

Figure 3: Improvement in the validation logloss with the

growth of cross layer depth. �e case with 0 cross layers is

equivalent to a single DNN model. In the legend, “layers” is

hidden layers, “nodes” is hidden nodes. Different symbols

represent different hyperparameters for the deep network.

4.5 Non-CTR datasets

We show that DCN performs well on non-CTR prediction prob-

lems. We used the forest covertype (581012 samples and 54 fea-

tures) and Higgs (11M samples and 28 features) datasets from the

UCI repository. �e datasets were randomly split into training

(90%) and testing (10%) set. A grid search over the hyperparam-

eters was performed. �e number of deep layers ranged from 1

to 10 with layer size from 50 to 300. �e number of cross layers

ranged from 4 to 10. �e number of residual units ranged from 1

to 5 with their input dimension and cross dimension from 50 to 300.

For DCN, the input vector was fed to the cross network directly.

For the forest covertype data, DCN achieved the best test accu-

racy 0.9740 with the least memory consumption. Both DNN and

DC achieved 0.9737. �e optimal hyperparameter se�ings were

8 cross layers of size 54 and 6 deep layers of size 292 for DCN, 7

deep layers of size 292 for DNN, and 4 residual units with input

dimension 271 and cross dimension 287 for DC.

For the Higgs data, DCN achieved the best test logloss 0.4494,

whereas DNN achieved 0.4506. �e optimal hyperparameter set-

tings were 4 cross layers of size 28 and 4 deep layers of size 209 for

DCN, and 10 deep layers of size 196 for DNN. DCN outperforms

DNN with half of the memory used in DNN.

5 CONCLUSION AND FUTURE DIRECTIONS

Identifying effective feature interactions has been the key to the

success of many prediction models. Regre�ably, the process o�en

requires manual feature cra�ing and exhaustive searching. DNNs

are popular for automatic feature learning; however, the features

learned are implicit and highly nonlinear, and the network could be

unnecessarily large and inefficient in learning certain features. �e

Deep & Cross Network proposed in this paper can handle a large

set of sparse and dense features, and learns explicit cross features

of bounded degree jointly with traditional deep representations.

�e degree of cross features increases by one at each cross layer.

Our experimental results have demonstrated its superiority over

the state-of-art algorithms on both sparse and dense datasets, in

terms of both model accuracy and memory usage.

We would like to further explore using cross layers as building

blocks in other models, enable effective training for deeper cross

networks, investigate the efficiency of the cross network in poly-

nomial approximation, and be�er understand its interaction with

deep networks during optimization.
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Appendix: Proof of �eorem 3.1

Proof. Notations. Let i be a multi-index vector of 0’s and 1’s

with its last entry fixed at 1. For multi-index α = [α1, · · · ,αd ] ∈

N
d and x = [x1, · · · ,xd ]

T , we define |α | =
∑d
i=1 αi , and xα =

x
α1

1 x
α2

2 · · ·x
αd
d

.

We first proof by induction that

дl (x0) = xTl wl =

l+1∑

p=1

∑

|i |=p

l∏

j=0

(xT0 wj )
i j , (9)

and then we rewrite the above form to obtain the desired claim.

Base case. When l = 0, д0(x0) = xT0 w0. Clearly Equation 9 holds.

Induction step. We assume that when l = k ,

дk (x0) = xT
k
wk =

k+1∑

p=1

∑

|i |=p

k∏

j=0

(xT0wj )
i j .

When l = k + 1,

xT
k+1

wk+1 = (xT
k
wk )(x

T
0 wk+1) + x

T
k
wk+1 (10)

Because xk only containsw0, . . . ,wk−1, it follows that the formula

of xT
k
wk+1 can be obtained from that of xT

k
wk by replacing all the

wk ’s occurred in xT
k
wk to wk+1. �en

xT
k+1

wk+1 =

k+1∑

p=1

∑

|i |=p

(xT0 wk+1)

k∏

j=0

(xT0 wj )
i j
+

k+1∑

p=1

∑

|i |=p

(xT0 wk+1)
ik

k−1∏

j=0

(xT0 wj )
i j

=

k+2∑

p=2

∑

|i |=p
ik=1

k+1∏

j=0

(xT0 wj )
i j
+

k+1∑

p=1

∑

|i |=p
ik=0

k+1∏

j=0

(xT0wj )
i j

=

k+1∑

p=2

∑

|i |=p

k+1∏

j=0

(xT0 wj )
i j
+ (xT0 wk+1) +

k+1∏

j=0

(xT0 wj )

=

k+2∑

p=1

∑

|i |=p

k+1∏

j=0

(xT0 wj )
i j .

(11)

�e first equality is a result of increasing the size of i from k + 1

to k + 2. �e second equality used the fact that the last entry of

i is always 1 by definition, and the same was applied to the last

equality. By induction hypothesis, Equation 9 holds for all l ∈ Z.

Next, we compute cα (w0, · · · ,wl ), the coefficient of xα , by rear-

ranging the terms in Equation 9. Note that all the different per-

mutations of x1 · · ·x1︸   ︷︷   ︸
α1

· · · xd · · · xd︸    ︷︷    ︸
αd

are in the form of xα . �ere-

fore, cα is the summation of all the weights associated with each

permutation occurred in Equation 9. �e weight for permutation

xj1xj2 · · ·xjp is
∑

i1, · · · ,ip

w
(j1)
i1

w
(j2)
i2

· · ·w
(jp )

ip
,

where (i1, · · · , ip ) belongs to the set of all the corresponding active

indices for |i| = p, specifically,

(i1, · · · , ip ) ∈ Bp =:
{
y ∈ {0, 1, · · · , l}p

�� yi < yj ∧ yp = l
}
.

�erefore, if we denote Pα to be the set of all the permutations of

(1 · · · 1︸︷︷︸
α1

· · ·d · · ·d︸︷︷︸
αd

), then we arrive at our claim

cα =
∑

j1, · · · , jp ∈Pp

∑

i1, · · · ,ip ∈Bp

p∏

k=1

w
(jk )
ik
. (12)

�
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