
Sparse-Interest Network for Sequential Recommendation
Qiaoyu Tan1, Jianwei Zhang2, Jiangchao Yao2, Ninghao Liu1

Jingren Zhou2, Hongxia Yang2, Xia Hu1
1 Department of Computer Science and Engineering, Texas A&M University, TX, USA

2 Alibaba Group
{qytan,nhliu43,xiahu}@tamu.edu

{zhangjianwei.zjw,jiangchao.yjc,jingren.zhou,yang.yhx}@alibaba-inc.com

ABSTRACT
Recent methods in sequential recommendation focus on learning
an overall embedding vector from a user’s behavior sequence for
the next-item recommendation. However, from empirical analy-
sis, we discovered that a user’s behavior sequence often contains
multiple conceptually distinct items, while a unified embedding
vector is primarily affected by one’s most recent frequent actions.
Thus, it may fail to infer the next preferred item if conceptually
similar items are not dominant in recent interactions. To this end,
an alternative solution is to represent each user with multiple em-
bedding vectors encoding different aspects of the user’s intentions.
Nevertheless, recent work on multi-interest embedding usually
considers a small number of concepts discovered via clustering,
which may not be comparable to the large pool of item categories
in real systems. It is a non-trivial task to effectively model a large
number of diverse conceptual prototypes, as items are often not
conceptually well clustered in fine granularity. Besides, an individ-
ual usually interacts with only a sparse set of concepts. In light
of this, we propose a novel Sparse Interest NEtwork (SINE) for
sequential recommendation. Our sparse-interest module can adap-
tively infer a sparse set of concepts for each user from the large
concept pool and output multiple embeddings accordingly. Given
multiple interest embeddings, we develop an interest aggregation
module to actively predict the user’s current intention and then use
it to explicitly model multiple interests for next-item prediction.
Empirical results on several public benchmark datasets and one
large-scale industrial dataset demonstrate that SINE can achieve
substantial improvement over state-of-the-art methods.

CCS CONCEPTS
• Computer systems organization→ Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability.

KEYWORDS
Recommender system, Sequential recommendation, Sparse-interest
network, Multi-interest extraction

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WSDM ’21, March 8–12, 2021, Virtual Event, Israel
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8297-7/21/03. . . $15.00
https://doi.org/10.1145/3437963.3441811

0.
01

0.
15

0.
35

0.
49

OUT IN

Hit Miss

0.
31

0.
12

HIT MISS

Figure 1: Hit and Miss analysis in top@100 of single-
embedding based SASRec [21] for next-item prediction on
Taobao [51]. The left side shows the prediction results over
"In" and "Out" settings. "In" means similar items belong
to the same category of next predicted item are interacted
in recent fifty behaviors, otherwise "Out". The right side
shows the frequency of similar items in recent five behav-
iors. SASRec prefers to correctly predict the next-item if sim-
ilar items are dominant in past interactions.

ACM Reference Format:
Qiaoyu Tan, Jianwei Zhang, Jiangchao Yao, Ninghao Liu, Jingren Zhou,
Hongxia Yang, Xia Hu. 2021. Sparse-Interest Network for Sequential Recom-
mendation. In Proceedings of the Fourteenth ACM International Conference on
Web Search and Data Mining (WSDM ’21), March 8–12, 2021, Virtual Event,
Israel. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3437963.
3441811

1 INTRODUCTION
Recommender systems have been widely applied to many online
services such as E-commerce, advertising, and social media to per-
form personalized information filtering [14, 17, 31, 46]. At its core is
to estimate how likely a user will interact with an item based on the
past actions, e.g., purchases and clicks. Traditional recommendation
methods adopt collaborative filtering approaches [35] to address
the problem by assuming that behaviorally similar users would
exhibit similar preferences on items. Recently, neural-based deep
recommendation models have shown revolutionary performance
in many recommendation scenarios, due to the powerful expressive
ability of deep learning. For example, NCF [14] extends matrix fac-
torization based models [35] by replacing the interaction function
of inner product with nonlinear neural networks. PinSage [46] is
built on GraphSage [10], and learns user and item embeddings by
conducting convolutional operations on the user-item interaction
graph. However, these methods ignore the sequential structure in

ar
X

iv
:2

10
2.

09
26

7v
1

 [
cs

.I
R

]
 1

8
Fe

b
20

21

https://doi.org/10.1145/3437963.3441811
https://urldefense.com/v3/__https://doi.org/10.1145/3437963.3441811__;!!KwNVnqRv!QMsEAQ0ZwWc1HRCEEsWnlhXxKCkFuu52gYUDNzFzC7Zn5TnD28xpyI9FaZWGQ6g
https://doi.org/10.1145/3437963.3441811
https://urldefense.com/v3/__https://doi.org/10.1145/3437963.3441811__;!!KwNVnqRv!QMsEAQ0ZwWc1HRCEEsWnlhXxKCkFuu52gYUDNzFzC7Zn5TnD28xpyI9FaZWGQ6g
https://doi.org/10.1145/3437963.3441811

user behaviors and thus fail to capture the correlations between
adjacent behaviors.

Some recent works formalize recommendation as a sequential
problem. The principal idea behind this is to represent each user
with an ordered sequence and assume its order matters. With a
user’s behavior history, the sequential recommendation approach
first sorts the past behaviors to obtain the ordered sequence. Af-
ter that, the sequence will be fed into different neural sequential
modules (e.g., recurrent neural network [17], convolutional net-
work [42], and Transformer [21]) to generate an overall user em-
bedding vector, which is then used to predict the next interested
item. Since the sequential recommendation approach reflects the
real-world recommendation situation, it has attracted much atten-
tion in modern recommendation systems.

Despite the recent advances, we argue that existing sequential
recommendation models may be sub-optimal for next-item predic-
tion due to the bottleneck of learning a single embedding from the
user’s behavior sequence. Each user in an E-commerce platform
usually interacts with several types of items over time that are
conceptually different. For example, we find that the number of
categories of items that belong to different categories in a user’s
recent fifty behaviors is around 10 on Taobao dataset [51]. With
multiple user’s intentions 1, we also observe that, in Figure 1, an
overall user embedding vector learned from a behavior sequence is
primarily affected by the recent most frequent actions. Thus, it may
fail to extract related information for learning to predict the next
item if its conceptually similar items are not dominant in recent
interactions. Therefore, a promising alternative solution is to learn
multiple embedding vectors from a user’s behavior sequence, where
each embedding vector encodes one aspect of the user’s interests.

However, there are several challenges for effectively extracting
multiple embedding vectors from the user’s behavior sequence in
industry-level data. First, items are often not conceptually well
clustered in real systems. Although category information of items
can be used as concepts, in many cases, such type of auxiliary
information may not be available or reliable due to annotation noise
in practice. The second challenge is to adaptively infer a sparse
set of interested concepts for a user from the large concept pool.
The inference procedure includes a selection operation, which is a
discrete optimization problem and hard to train end-to-end. Third,
given multiple interest embedding vectors, we need to determine
which interest is likely to be activated for next-item predictions.
During training, the next predicted item could be used as a label to
activate the preferred intention, but the inference stage has no such
label. The model has to predict a user’s next intention adaptively.

In this paper, we propose a novel Sparse-Interest NEtwork (SINE)
for sequential recommendation to address these issues. SINE can
learn a large pool of interest groups and capture multiple intentions
of users in an end-to-end fashion. Figure 4 shows the overall struc-
ture of SINE. Our sparse interest extractionmodule adaptively infers
the interacted interests of a user from a large pool of interest groups
and outputs multiple interest embeddings. The aggregation module
enables dynamically predicting the user’s next intention, which

1Through out the paper, we interchangeably use intention and interest to indicate
item cluster that consists of conceptually similar items.

helps to capture multi-interests for top-N item recommendation ex-
plicitly. We conduct experiments on several public benchmarks and
an industrial dataset. Empirical results show that our framework
outperforms state-of-the-art models and produces reasonable item
clusters. To summarize, the main contributions of this paper are:

• We propose a comprehensive framework that integrates
large-scale item clustering and sparse-interest extraction
jointly in a recommender system.

• We investigate an adaptive interest aggregation module to
explicitly model users’ multiple interests for top-N recom-
mendation in the sequential recommendation scenario.

• Our model not only achieves state-of-the-art performance
on several real-world challenging datasets, but also produces
reasonable interest groups to assist multi-interest extraction.

2 RELATEDWORK
2.1 General Recommendation
In the conventional recommendation system, researchers focus
on extracting users’ general tastes from their historical behaviors.
The typical examples include collaborative filtering [35, 36], matrix
factorization techniques [23], and factorization machines [32]. The
critical challenge of them lies in representing users and items with
embedding vectors to compute their similarity. Matrix factorization
(MF)methods seek tomap users and items into joint latent space and
estimate user-item interactions through the inner product between
their embedding vectors. Factorization machines [32] aim to model
all interactions between variables using factorized parameters and
can even estimate interactions when facing sparsity problems.

Recently, inspired by the success of deep learning in computer vi-
sion and natural language processing [49], much effort has been put
into developing deep-learning-based recommender algorithms [9,
14, 40]. One line of work seeks to use neural networks to extract
additional features for the content-aware recommendation [22]. An-
other range of work targets to replace traditional MF. For example,
NCF [14] uses multi-layer perceptions to replace the inner product
operation in MF for interaction estimation, while AutoRec [37]
adopts autoencoders to predict ratings. Moreover, several attempts
also tried to apply graph neural networks [7, 19, 39, 48] for recom-
mendation [13, 46].

2.2 Sequential Recommendation
Sequential recommendation has become the crucial problem of
modern recommender systems, owing to its ability to capture the
sequential patterns among successive items. One line of work at-
tempts to model the item-to-item transition matrix based on the
Markov Chain (MC). For instance, some works model the sequence
using first-order Markov chain [4, 33], which assumes that the next
action only relies on the last behavior. To relax this limitation, there
are also methods adopting high-order MCs that consider more
previous items [11, 12, 45]. A representative work is Caser [42],
which treats use’s behavior sequence as an "image" and adopts
Convolutional Neural Network to extract user representation.

Another line of works seeks to use a sequential neural module
to process the user behavior sequence [16, 21, 38, 41]. For example,
GRU4Rec [17] first applies Gated Recurrent Units (GRU) to model
the whole session for a more accurate recommendation. At the

…

1

2

3

4

5

6

7

1 5

2

4 6

5 7

Sequence Encoder

Intention
prediction

Intention
selector

Sparse-interest module Interest aggregation module

Concept Activation

Concept pool

Item

Conceptual prototype

Interest embedding

Predicted intention

Output embedding
𝑪"#$%

∅'((𝑥%)

∅'
,(𝑥%)

∅'-(𝑥%)

v%

Figure 2: The architecture of SINE (better viewed in color). Given a user’s behavior sequence as input, sparse-interest module
aims to adaptively activate his/her interests from the large interest group pool as well as output multi-interest embeddings.
Then, the interest aggregation module helps to select the most preferred interest for next-item recommendation by actively
predicting user’s next intention. SINE offers the ability to cluster items and infer user’s sparse set of interests in an end-to-end
fashion.

same time, SASRec [21] explores to use self-attention [43] based
sequential model to capture long-term semantics and use an at-
tention mechanism to make its prediction based on relatively few
actions. Besides, there are some other works [16, 25, 47] that in-
troduces specific neural modules for particular recommendation
scenarios. For instance, DIN [50] develops a local activation unit
to adaptively learn the user’s representation from past behaviors
for a specific ad. RUM [3] introduces a memory-augmented neural
network with the insights of collaborative filtering for the recom-
mendation. SDM [28] integrates a multi-head self-attention module
with a gated fusion module to capture both short- and long-term
user preferences for the next-item prediction.

2.3 Attention Mechanism
The attention mechanism is initially proposed in computer vi-
sion [2] and only becomes popular in recent years. It is first applied
to solve the machine translation problem by [1] and later becomes
an outbreaking building block as Transformer [43]. Recently, BERT
leverages Transformer to achieve enormous success in the natural
language processing filed for pre-training. It has also been success-
fully applied in many recommendation applications [38] and is
rather useful and efficient in real-world application tasks.

3 METHODOLOGY
In this section, we first introduce the problem formulation and then
discuss the proposed framework in detail. Finally, we discuss the
difference between our framework and existing methods.

3.1 Notations and Problem Formulation
Assume {x(𝑢) }𝑁

𝑢=1 be the behavior dataset consists of the interac-
tions between 𝑁 users and𝑀 items. x(𝑢) = [𝑥 (𝑢)1 , 𝑥

(𝑢)
2 , · · · , 𝑥 (𝑢)𝑛]

is the ordered sequence of items clicked by user 𝑢, where 𝑛 is the
number of clicks made by user𝑢. Each element 𝑥 (𝑢)𝑡 ∈ {1, 2, · · · , 𝑀}

in the sequence is the index of the item being clicked. Note that, due
to the strict requirements of latency and performance, industrial
recommender systems consist of two stages, the matching stage
and ranking stage [6]. The matching stage aims to retrieve top-𝑁
candidate items from a large volume of item pool, while the ranking
stage targets to sort the candidate items by more precise scores. We
focus on improving the effectiveness of the matching stage, where
the task is to retrieve high-quality candidate items that the user
might be clicked with based on the observed sequence x(𝑢) .

3.2 Sparse-Interest Framework
As the item pools of real-world recommender systems often consist
of millions or even billions of items, the matching stage is crucial
in modern recommender systems. Specifically, a deep sequential
model in the matching stage typically has a sequence encoder 𝜙𝜃 (·)
and an item embedding table H ∈ R𝑀×𝐷 , where 𝜃 is the set that
contains all the trainable parameters including H. The encoder
takes the user’s historical behavior sequence x(𝑢) as input and
outputs the representation of the sequence 𝜙𝜃 (x(𝑢)), which can
be viewed as the representation of the user’s intention. The user’s
intention embedding is then used as a query to generate his/her
candidate items from the item pool via a fast K nearest neighbor
algorithm (i.e., faiss [20]). Most encoders 𝜙𝜃 (·) in the literature
output a single 𝐷-dimensional embedding vector, while there are
also models that output 𝐾 𝐷-dimensional embedding vectors to
preserve the user’s intentions under 𝐾 latent categories. We mainly
focus on the latter direction and target to capture a user’s diverse
intentions accurately.

The state-of-art sequence encoders for capturing a user’s mul-
tiple intentions can be summarized into two categories. The first
type of methods resort to powerful sequential encoders to implic-
itly extract the user’s multiple intentions, such as models based
on multi-head self-attention (aka the Transformer [43]). The other

type of methods rely on the latent prototype to explicitly capture
a user’s multiple intentions. In general, the former approach may
limit its ability to capture multiple intentions due to the mixed na-
ture of intention detection and embedding in practice. For example,
the empirical results show that the multiple vector representations
learned by Transformer do not seem to have a clear advantage
over the single-head implementation [21] for recommendation. In
contrast, the later can effectively extract a user’s diverse interests
with the help of concept identified via clustering as empirically
proved in [27, 29]. However, these methods scale poor because they
require each user has an intention embedding under every concept,
which easily scales up to thousands in industrial applications. For
instance, millions or even billions of items belong to more than
10 thousand expert-labeled leaf categories [24] in the e-commerce
platform of Tmall in China. With a large pool of interest concepts in
real systems, a scalable multi-interest extraction module is needed.

Therefore, we propose a sparse-interest network here, which
offers the ability to adaptively activate a subset of concepts from
the large concept pool for a user. The input of our model is the
user’s behavior sequence x(𝑢) , which is then fed into an embedding
layer and transformed into item embedding matrix X𝑢 ∈ R𝑛×𝐷 . Let
C ∈ R𝐿×𝐷 denotes the overall conceptual prototype matrix, and
C𝑢 ∈ R𝐾×𝐷 indicates the activated prototypical embedding matrix
on 𝐾 latent concepts for user 𝑢. 𝐿 is the total number of concepts.

3.2.1 Concept activation. Our sparse-interest layer starts by in-
ferring the interested conceptual prototypes C𝑢 for each user 𝑢.
Given X𝑢 ∈ R𝑛×𝐷 , the self-attentive method [26] is first applied to
aggregate the input sequence selectively.

a = softmax(tanh(X𝑢W1)W2), (1)

where W1 ∈ R𝐷×𝐷 and W2 ∈ R𝐷 are trainable parameters. The
vector a ∈ R𝑛 is the attention weight vector of user behaviors.
When we sum up the embeddings of input sequence according
to the attention weight, we can obtain a virtual concept vector
z𝑢 = (a⊤X𝑢)⊤ for the user. z𝑢 ∈ R𝐷 reflects the user’s general
intentions and could be used to activate the interested conceptual
prototypes as:

s𝑢 = ⟨C, z𝑢⟩ ,
idx = rank(s𝑢 , 𝐾),

C𝑢 = C(idx, :) ⊙ (Sigmoid(s𝑢 (idx, :)1𝑇)),
(2)

where rank(s𝑢 , 𝐾) is the top-K ranking operator, which returns
the indices of the 𝐾-largest values in s𝑢 . The index returned by
rank(s𝑢 , 𝐾) contains the indices of prototypes selected for user 𝑢.
C(idx, :) performs the row extraction to form the the sub-prototype
matrix, while s(idx, :) extracts values in s𝑢 with indices idx. 1 ∈ R𝐾
is a vector with all elements being 1. ⊙ represents Hadamard prod-
uct and ⟨·, ·⟩ is inner product. C𝑢 ∈ R𝐾×𝐷 is the final activated 𝐾
latent concept embeddingmatrix for user𝑢. Equation 2 is a top-𝐾 se-
lection trick that enables discrete selection operation differentiable,
prior work [8] has found that it is very effective in approximating
top-𝐾 selection problem.

3.2.2 Intention assignment. After inferring the current conceptual
prototypes C𝑢 , we can estimate the user intention related with each
item in his/her behavior sequence according to their distance to

the prototypes.

𝑃𝑘 |𝑡 =
exp (LayerNorm1 (X𝑢𝑡 W3) · LayerNorm2 (C𝑢𝑘))∑𝐾

𝑘′=1 exp (LayerNorm1 (X𝑢𝑡 W3) · LayerNorm2 (C𝑢𝑘′))
,

(3)
where 𝑃𝑘 |𝑡 measures how likely the primary intention at position 𝑡
is related with the 𝑘𝑡ℎ latent concept. C𝑢

𝑘
∈ R𝐷 is the embedding

of the 𝑘𝑡ℎ activated conceptual prototype of user 𝑢. W3 ∈ R𝐷×𝐷

is the trainable weight matrix. LayerNorm𝑙 (·) represents a layer
normalization layer. Note that we are using cosine similarity instead
of the inner product here, due to the normalization. This choice is
motivated by the fact that cosine is much less vulnerable than dot
product when it comes to model collapse [29], e.g., the degeneration
situation where the model is ignoring most prototypes.

3.2.3 Attention weighting. In addition to the attention weight 𝑃𝑘 |𝑡
calculated from the conceptual perspective, we also consider an-
other attention weight 𝑃𝑡 |𝑘 to estimate how likely the item at posi-
tion 𝑡 is essential for predicting the user’s next intentions.

𝑃𝑡 |𝑘 = a𝑘𝑡 ,

a𝑘 = softmax(tanh(X𝑢W𝑘,1)W𝑘,2)𝑇 ,
(4)

a𝑘 ∈ R𝑛 is the attention vector for all positions. The superscript 𝑘
represents it’s the attention layer for the 𝑘𝑡ℎ activated intention.
Similar to Equation 1, the above equation is another self-attentive
layer. The primary difference lies in that we try to make use of
the order of user sequences here and add extra trainable positional
embeddings [43] to the input embeddings. The dimensionality of
positional embeddings is the same as that of the item embeddings
so that they can be directly summed.

3.2.4 Interest embedding generation. We can now generate mul-
tiple interest embedding vectors from a user’s behavior sequence
X𝑢 according to 𝑃𝑘 |𝑡 and 𝑃𝑡 |𝑘 . Specifically, the 𝑘𝑡ℎ output of our
sparse-interest encoder 𝜙𝑘

𝜃
(x(𝑢)) ∈ R𝐷 is computed as follows:

𝜙𝑘
𝜃
(x(𝑢)) = LayerNorm3 (

𝑛∑︁
𝑡=1

𝑃𝑘 |𝑡 · 𝑃𝑡 |𝑘 · X𝑢𝑡) . (5)

Till now, we have introduced the whole process of the sparse-
interest network. Given a user’s behavior sequence, we first activate
his/her preferred conceptual prototypes from the concept pool. The
intention assignment is then performed to estimate the user in-
tention related with each item in the input sequence. After that,
the self-attentive layer is applied to calculate all items’ attention
weights for next-item prediction. Finally, the user’s multiple inter-
est embeddings are generated through a weighted sum, according
to Equation 5.

3.3 Interest Aggregation Module
After the sparse-interest extraction module, we obtain multiple
interest embeddings for each user. A natural follow-up question is
how to leverage various interest for practical inference. An intuitive
solution is to use the next predicted item as a target label to select
different interest embeddings for training as in MIND [24]. Despite
its simplicity, the main drawback is that there are no target labels

during inference, which leads to a gap between training and testing
and may result in performance degeneration.

To address this issue, we propose an adaptive interest aggre-
gation module based on active prediction. The motivation here is
that it is easier to predict a user’s temporal preference-based next
intentions instead of finding the ideal labels. Specifically, based on
the intention assignment score 𝑃𝑘 |𝑡 computed in Equation 3, we
can obtain an intention distribution matrix, denoted by P𝑢 ∈ R𝑛×𝐾 ,
for all items in the behavior sequence. Then, the input behavior
sequence x𝑢 can be reformulated from the intention perspective
denoted by X̂𝑢 = P𝑢C𝑢 , where X̂𝑢 ∈ R𝑛×𝐷 is viewed as the inten-
tion sequence of user 𝑢. With X̂𝑢 , the user’s next intention C𝑢𝑎𝑝𝑡 is
adaptively computed as

C𝑢𝑎𝑝𝑡 = LayerNorm4
(
(softmax(tanh(X̂𝑢W3)W4))⊤X̂𝑢

)⊤
,

(6)
where C𝑢𝑎𝑝𝑡 ∈ R𝐷 is the predicted intention of user 𝑢 for next item.
W3 ∈ R𝐷×𝐷 and W4 ∈ R𝐷 are trainable parameters. Given C𝑢𝑎𝑝𝑡
and multiple interest embeddings {𝜙𝑘

𝜃
(x(𝑢))}𝐾

𝑘=1, the aggregation
weights of different interests are calculated as

𝑒𝑢
𝑘
=

exp((C𝑢𝑎𝑝𝑡)⊤𝜙𝑘𝜃 (x
(𝑢))/𝜏)∑𝐾

𝑘′=1 exp((C
𝑢
𝑎𝑝𝑡)⊤𝜙𝑘

′
𝜃
(x(𝑢))/𝜏)

. (7)

Where 𝑒𝑢 = [𝑒𝑢1 , 𝑒
𝑢
2 , · · · , 𝑒

𝑢
𝐾
]𝑇 ∈ R𝐾 is the attention vector for

diverse interests. 𝜏 is a temperature parameter to tune. When 𝜏
is large (𝜏 → ∞), 𝑒𝑢 approximates a uniformly distributed vector.
When 𝜏 is small (𝜏 → 0+), 𝑒𝑢 approximates a one-hot vector. In
experiments, we use 𝜏 = 0.1 to enforce the aggregator select the
most preferred intention for inference. The final user representation
v𝑢 ∈ R𝐷 is computed as

v𝑢 =

𝐾∑︁
𝑘=1

𝑒𝑢
𝑘
· 𝜙𝑘
𝜃
(x(𝑢) . (8)

3.4 Model Optimization
We follow the common practice [21, 24] to train our model by
recovering the next click 𝑥 (𝑢)𝑡 based on the truncated sequence
prior to the click, i.e., [𝑥 (𝑢)1 , 𝑥

(𝑢)
1 , · · · , 𝑥 (𝑢)

𝑡−1]. Given a training sample
(𝑢, 𝑡) with the user embedding vector v𝑢 and item embedding H𝑡 ,
we aim to minimize the following negative log-likelihood

L𝑙𝑖𝑘𝑒 = −
∑︁
𝑢

∑︁
𝑡

log 𝑃 (𝑥 (𝑢)𝑡 |𝑥 (𝑢)1 , 𝑥
(𝑢)
2 , · · · , 𝑥 (𝑢)

𝑡−1)

= −
∑︁
𝑢

∑︁
𝑡

log
exp(H⊤

𝑡 v
𝑢)∑

𝑗 ∈{1,2, · · · ,𝑀 } exp(H⊤
𝑗
v𝑢))

.

(9)

Equation (9) is usually intractable in practice, because the sum
operation of the denominator is computationally prohibitive. We,
therefore, leverage a Sampled Softmax technique [6, 18] to train our
model. Besides, we also introduce a covariance regularizer follow-
ing [5] to enforce the learned conceptual prototypes orthogonally.
Specifically, denote M = 1

𝐷
(C −𝐶) (C −𝐶)⊤ as the covariance ma-

trix of prototype embeddings, where C is the mean matrix of C.
The regularization loss L𝑐 to regularize the covariance is

L𝑐 =
1
2 (| |M| |2𝐹 − ||diag(M) | |2𝐹) . (10)

Where | | · | |𝐹 is the Frobenius norm matrix. Combine the two losses
above, the final loss function of our model is

L = L𝑙𝑖𝑘𝑒 + 𝜆L𝑐 , (11)

where 𝜆 is the trade-off parameter to balance the two losses.

3.5 Connections with Existing Models
We compare our model and existing methods that focus on extract-
ing user’s multiple interest embeddings in the matching stage of
recommendation. We roughly divided them into two categories and
analyzed the difference below.
Implicit approach. This type of method relies on powerful neu-
ral networks to implicitly cluster historical behaviors and extract
diverse interests. For example, MIND [24] utilizes Capsule net-
work [34] to adaptively aggregate user’s behaviors into interest em-
bedding vectors. SASRec [21] adopts the multi-head self-attention
mechanism [43] to output multiple representation for a user. Com-
pared with these methods, our model belongs to an explicit ap-
proach that explicitly detects intentions from the user’s behavior
sequence based on latent conceptual prototypes.
Explicit approach. Methods that belong to this type maintain
a set of conceptual prototypes to explicitly determine the inten-
tions of items in the user’s behavior sequence. MCPRN [44] is a
recent representative work for extracting multiple interests from
the session for the next-item recommendation. DisenRec [29] uti-
lizes latent prototypes to help learn disentangled representations for
recommendation. Compared with them, we also follow the explicit
approach, but our model scales to a large-scale dataset. Specifically,
they require the number of diverse interest embeddings equals to
the number of conceptual prototypes. However, the number of la-
tent concepts depends on applications and can be easily scaled up
to hundreds or even thousands in industrial recommender systems,
which hinders their application in practice. In contrast, our sparse-
interest network offers the ability to infer a sparse set of preferred
intentions from the large concept pool automatically.

4 EXPERIMENTS
In this section, we conduct experiments over three benchmark
datasets and one billion-scale industrial data to validate the pro-
posed approach. Specifically, we try to answer the following ques-
tions:

• How effective is the proposed method compared to other
state-of-the-art baselines? Q1

• What are the effects of the different modules, sparse-interest
module, and interest aggregation module through ablation
studies? Q2

• How sensitive are the hyper-parameter settings, including
the preferred 𝐾 intentions and the corresponding 𝐿 concep-
tual prototypes? Q3

4.1 Experimental Setup
In this section, we elaborate on the dataset description, evaluation
metrics, and comparing methods in our experiments.
Datasets. We conduct experiments on three benchmark datasets
and one billion-scale industrial data. The statistics of the datasets
are shown in Table 2.

Table 1: Recommendation performance on public datasets. The best results are highlighted with bold fold. All the numbers in
the table are percentage numbers with ’%’ omitted.

MovieLens Amazon Taobao
Metrics@10 Metrics@50 Metrics@50 Metrics@100 Metrics@50 Metrics@100
HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG

GRU4Rec 14.61 5.66 41.61 10.66 1.70 0.51 2.74 0.67 9.41 3.60 12.43 4.08
Caser 15.44 6.13 43.64 11.53 2.60 0.81 3.96 1.03 10.71 4.96 13.50 5.68
SASRec 17.34 7.84 46.01 13.53 3.17 1.01 4.43 1.28 13.36 5.64 15.73 6.38
MIND 15.62 6.58 43.98 12.30 3.85 1.29 5.35 1.56 15.35 8.35 17.49 8.72
MCPRN 15.82 6.77 44.21 12.83 3.42 1.18 5.22 1.47 14.32 7.34 16.43 7.67
SINE 16.34 7.06 45.79 13.50 4.57 1.61 6.26 1.88 17.69 10.41 20.64 10.89

Table 2: Statistics of the datasets.

Dataset # users # items # interactions
MovieLens 6,040 3,952 1,000,209
Amazon 8,026,324 2,330,066 22,507,155
Taobao 987,994 4,162,024 100,150,807
ULarge 106,527,123 25,000,000 4,000,000,000

• MovieLens 2 collects user’s rating score for movies. In ex-
periments, we follow [15] to preprocess the dataset.

• Amazon 3 consists of product views from Amazon. In ex-
periments, we use the rating only version of Book category
behaviors. Note that this version is more challenging than
the 5-core version used in [24], due to its large volume and
sparsity.

• Taobao 4 collects user behaviors fromTaobao’s recommender
system. In experiments, we only use the click behaviors.

• ULarge consists of the clicked behaviors collected from the
daily logs of an Alibaba company from March 29 to April 4,
2020.

For all datasets, we follow [21] to split the datasets into train-
ing/validation/testing sets. Specifically, we split the historical se-
quence for each user into three parts: (1) the most recent action for
testing, (2) the second most recent action for validation, and (3) all
remaining actions for training. Note that during testing, the input
sequences contain training actions and the validation actions.
Competitors. We compare our proposed model SINE with the
following state-of-the-art sequential recommendation baselines.

• Single embedding models: GRU4Rec [17] is a pioneering
work that employs GRU to model user behavior sequences.
Caser [42] is a recent CNN-based sequential recommenda-
tion benchmark.

• Multi-embedding models: MIND [24] and SASRec [21]
are recently proposed multi-interest methods based on cap-
sule network [34] andmulti-head self-attention [43]. MCPRN
is another state-of-the-art multi-interest framework based
on latent conceptual prototypes.

Parameter Configuration. For a fair comparison, all methods are
implemented in Tensorflow and optimized with Adam optimizer
2https://grouplens.org/datasets/movielens/1m/
3http://jmcauley.ucsd.edu/data/amazon/
4https://tianchi.aliyun.com/dataset/dataDetail?dataId=649

with a mini-batch size of 128. The learning rate is fixed as 0.001. We
tuned the parameters of comparing methods according to values
suggested in original papers and set the embedding size 𝐷 as 128
and the number of negative samples as 5 and 10 for MovieLens
and other datasets. For our method, it has three crucial hyper-
parameters: the trade-off parameter 𝜆, the number of intentions
𝐾 , and latent prototypes 𝐿. We search 𝐾 from {4, 8, 12, 16}, 𝐿 from
{50, 100, 500, 1000, 2000, 5000} and 𝜆 from 0 to 1 with step size 0.1.
We found our model performs relative stable when 𝜆 is around 0.5
and set 𝜆 = 0.5. The configuration of the other two parameters for
four datasets are reported in Table 3.

Table 3: The optimal setting of our hyper-parameters for our
model. Other parameters like dimension𝐷 , sequence length
𝑛 and 𝜆 are set as 128, 20 and 0.5, respectively.

intentions 𝐾 # concepts 𝐿
MovieLens 4 50
Amazon 4 500
Taobao 8 1000
ULarge 8 5000

Evaluation Metrics. For each user in the test set, we treat all
the items that the user has not interacted with as negative items.
We use two commonly used evaluation criteria [14]: hit rate (HR)
and normalized discounted cumulative gain (NDCG) to evaluate the
performance of our model. Besides, we also leverage the widely
used Normalized Mutual Information (NMI) [30] to quantitative
analysis of the effectiveness of the learned conceptual prototypes
of our model in clustering items.

4.2 Comparisons with SOTA (Q1)
Table 1 summarizes the performance of SINE as well as baselines
on three benchmark datasets. Clearly, SINE achieves comparable
performance to all of the baselines on all the evaluation criteria
in general. Caser obtains the best performance over other models
(GRU4Rec) that only single output embedding for each user. It can
be observed that employing multiple embedding vectors (SASRec,
MIND, MCPRN, SINE) for a user perform generally better than
single embedding based methods (Caser and GRU4Rec). Therefore,
exploring multiple user-embedding vectors has proved to be an

Dolls Jackets

Cosmetics Cups

Figure 3: Concept visualization. We draw four concepts "dolls", "jackets", "cosmetics" and "cups" with the top-8 closest items.

5 1 0 1 5 2 0
K

0 . 1 2

0 . 1 9

0 . 1 8

0 . 1 7

0 . 1 6

0 . 1 5

0 . 1 4

0 . 1 3

0 . 2 0

H
R
@
50

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0
L

0 . 1 2

0 . 1 9

0 . 1 8

0 . 1 7

0 . 1 6

0 . 1 5

0 . 1 4

0 . 1 3

0 . 2 0

H
R
@
50

Figure 4: Sensitivity of SINE towards 𝐾 and 𝐿 on Taobao.

effective way of modeling users’ diverse interests and boosting se-
quential recommendation accuracy. Moreover, we can observe that
the improvement introduced by capturing user’s various intentions
is more significant for Taobao and Amazon datasets. The users of
Taobao and Amazon tend to exhibit more diverse interests in online
shopping than rating movies. The improvement of MIND over SAS-
Rec shows that dynamic routing serves as a better multi-interest
extractor than multi-head self-attention. An interesting observation
is that MIND beats MCPRN on Amazon and Taobao while losses
on MovieLens. It is mainly because MCPRN only supports cluster
all items into a small set of prototypes, which is difficult well to
cluster millions of items on Amazaon and Taobao. Considering the
MIND and SINE results, SINE consistently outperforms MIND on
three datasets over all evaluation metrics. This can be attributed to
two points: 1) The sparse-interest extractor layer explicitly utilizes
a large set of conceptual prototypes to cluster items and automati-
cally infer a subset of preferred intentions for interest embeddings
generation, which achieves a more precise representation of a user.
2) Interest aggregation module actively predicts the user’s current
intention to directly attend over multiple user embedding vectors,
enabling modeling multi-interests for top-N recommendation.

Parameter Sensitivity (Q3). We also investigate the sensitivity of
the number of intentions 𝐾 and conceptual prototypes 𝐿. Figure 4
reports the performance of our model in terms of HR. In particular,
we randomly select 1 million users for inference, and the average
result of 10 runs is reported. Results hold the same for other datasets,
and we omit the figure here for more space. From the figure, we
can observe that SINE obtains the best performance when 𝐾 = 8
and 𝐿 = 1000. Considering that Taobao has around 9000 different
categories in total, it verifies that the learned concepts indeed have
a strong connection of categories of items, and the concept could
be viewed as a virtual category that consists of several categories.

Table 4: Recommendation performance on industrial
dataset ULarge. Improv. rowmeans the improvement of our
model compared with the second-best baseline.

HR@50 HR@100 HR@500
Caser 6.93 16.75 36.94
GRU4Rec 5.46 14.80 33.35
SASRec 8.64 18.58 38.82
MCPRN 7.89 17.65 37.66
MIND 9.13 19.31 39.09
SINE 12.24 21.12 40.81
Improv. 34.06% 9.37% 4.40%

4.3 Industrial Results (Q1)
We further conduct an offline experiment to investigate the effec-
tiveness of our model in extracting user’s diverse interests in the
industrial dataset. We implemented our model and baselines on the
Alibaba company’s distributed cloud platform, where every two
workers share an NVIDIA Tesla P100GPU with 16GB memory.

Table 4 summarizes the performance in terms of Hit Rate. It is
clear that SINE significantly outperforms other baselines by a wide

Table 5: Prototype clustering evaluation compared with the
first, second and leaf level category information on ULarge.

Level-1 Level-2 Level-leaf
NMI 0.09 0.37 0.29

Table 6: Ablation study of SINE.

Dataset Method HR@50 HR@100

Taobao
SINE-cate 12.45 15.33
SINE-label 16.22 18.74

SINE 17.69 20.64

ULarge

SINE-cate 7.18 17.46
SINE-label 10.09 20.33

SINE 12.24 21.12

margin. Another interesting observation is that the gap between
SINE and the second-best benchmark (MIND) decreases when the
number of recalled items increases. This fact indicates that our
sparse-interest network helps capture user’s diverse interests and
ranks the most preferred items on the top recommendation list.
Case StudyWe also visualize the learned conceptual prototypes of
our model. Concretely, for each concept, we leverage its prototypi-
cal embedding vector to retrieve the top-8 closest items under their
cosine similarity. Figure 3 illustrates four exemplar concepts to
show their clustering performance. As can be seen, our model suc-
cessfully groups some semantic-similar items into a latent concept.
More importantly, the items in one concept come from different
semantic-close leaf categories. For example, the “cosmetics" concept
contains different kinds of skin-nursing products. It indicates that
compared to the conventional leaf-category partition, our concep-
tual prototype is related to the user’s high-level intention.

To confirm this point, we compare the learned concepts with
the expert-labeled category hierarchy in Alibaba company, where
the number of categories in the first, second, and leaf-level are 178,
7,945, and 14874, respectively. Table 5 reports the results in terms
of NMI. We can observe that the learned concepts are closest to the
second level category, not in the extreme fine-grained granularity
(leaf) or the very coarse granularity (first). This result demonstrates
that our model can capture the relative high-level semantics for the
user’s intention modeling.

4.4 Ablation Study (Q2)
We introduce two variants (SINE-cate and SINE-label) to validate
the effectiveness of the learned new prototypes and the interest
aggregation module. Specifically, SINE-cate is obtained by using the
category attributes as prototypes, while SINE-label is obtained by
adopting label-aware attention in [24] for training.We only conduct
experiments on Taobao and ULarge, since other datasets do not
have category attributes. Taobao and ULarge have 9439 and 14874
distinct categories, respectively. Note that, similar to MIND [24],
SINE-label first independently retrieves 𝐾 · N candidate items based
on 𝐾 embedding vectors and then outputs the final top-N recom-
mendation list by sorting 𝐾 · N items. Table 5 reports the results in

terms of HR. Obviously, SINE significantly outperforms the other
two variants in two datasets. The substantial difference between
SINE-cate and SINE shows that the learned concepts are better
to cluster items than the original items’ categories. It verifies our
motivation to cluster items in our model jointly. The improvement
of SINE over SINE-label validates that our interest attention module
is useful to model multiple interests for next-item recommendation.

5 CONCLUSIONS
In this paper, we propose a novel sparse-interest embedding frame-
work for the sequential recommendation. Our model can adaptively
activate multiple intentions from a large pool of conceptual proto-
types to generate multiple interest embeddings for a user. It also
develops an interest aggregation module to capture multi-interests
to obtain the overall top-N items actively. Empirical results demon-
strate that our model performs better than state-of-the-art base-
lines on challenging datasets. Results on the billion-scale industrial
dataset further confirm our model’s effectiveness in terms of rec-
ommendation accuracy and producing reasonable item clusters.
We plan to leverage lifelong learning to capture users’ long-term
interests for a more accurate recommendation.

REFERENCES
[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural ma-

chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473 (2014).

[2] Peter J Burt. 1988. Attention mechanisms for vision in a dynamic world. In
ICPRAM. IEEE Computer Society, 977–978.

[3] Xu Chen, Hongteng Xu, Yongfeng Zhang, Jiaxi Tang, Yixin Cao, Zheng Qin, and
Hongyuan Zha. 2018. Sequential recommendation with user memory networks.
In WSDM. 108–116.

[4] Chen Cheng, Haiqin Yang, Michael R Lyu, and Irwin King. 2013. Where you like
to go next: Successive point-of-interest recommendation. In IJCAI.

[5] Michael Cogswell, Faruk Ahmed, Ross Girshick, Larry Zitnick, and Dhruv Batra.
2015. Reducing overfitting in deep networks by decorrelating representations.
arXiv preprint arXiv:1511.06068 (2015).

[6] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks for
youtube recommendations. In RecSys. 191–198.

[7] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.
2019. Graph neural networks for social recommendation. In WWW. 417–426.

[8] Hongyang Gao and Shuiwang Ji. 2019. Graph u-nets. arXiv preprint
arXiv:1905.05178 (2019).

[9] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.
DeepFM: a factorization-machine based neural network for CTR prediction. arXiv
preprint arXiv:1703.04247 (2017).

[10] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In NIPS. 1024–1034.

[11] Ruining He, Chen Fang, Zhaowen Wang, and Julian McAuley. 2016. Vista: a
visually, socially, and temporally-aware model for artistic recommendation. In
RecSys. 309–316.

[12] Ruining He and Julian McAuley. 2016. Fusing similarity models with markov
chains for sparse sequential recommendation. In ICDM. IEEE, 191–200.

[13] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng
Wang. 2020. LightGCN: Simplifying and Powering Graph Convolution Network
for Recommendation. arXiv preprint arXiv:2002.02126 (2020).

[14] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In WWW. 173–182.

[15] Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. 2016. Fast
matrix factorization for online recommendation with implicit feedback. In SIGIR.
ACM, 549–558.

[16] Balázs Hidasi and Alexandros Karatzoglou. 2018. Recurrent neural networks
with top-k gains for session-based recommendations. In CIKM. 843–852.

[17] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2015. Session-based recommendations with recurrent neural networks. arXiv
preprint arXiv:1511.06939 (2015).

[18] Sébastien Jean, Kyunghyun Cho, Roland Memisevic, and Yoshua Bengio. 2014.
On using very large target vocabulary for neural machine translation. arXiv
preprint arXiv:1412.2007 (2014).

[19] Bowen Jin, Chen Gao, Xiangnan He, Depeng Jin, and Yong Li. 2020. Multi-
behavior recommendation with graph convolutional networks. In SIGIR. 659–
668.

[20] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity
search with GPUs. IEEE Transactions on Big Data (2019).

[21] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-
mendation. In ICDM. IEEE, 197–206.

[22] Donghyun Kim, Chanyoung Park, Jinoh Oh, Sungyoung Lee, and Hwanjo Yu.
2016. Convolutional matrix factorization for document context-aware recom-
mendation. In RecSys. 233–240.

[23] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 42, 8 (2009), 30–37.

[24] Chao Li, Zhiyuan Liu, Mengmeng Wu, Yuchi Xu, Huan Zhao, Pipei Huang,
Guoliang Kang, Qiwei Chen, Wei Li, and Dik Lun Lee. 2019. Multi-interest
network with dynamic routing for recommendation at Tmall. In CIKM. 2615–
2623.

[25] Jiacheng Li, Yujie Wang, and Julian McAuley. 2020. Time Interval Aware Self-
Attention for Sequential Recommendation. In WSDM. 322–330.

[26] Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing Xiang,
Bowen Zhou, and Yoshua Bengio. 2017. A structured self-attentive sentence
embedding. arXiv preprint arXiv:1703.03130 (2017).

[27] Ninghao Liu, Qiaoyu Tan, Yuening Li, Hongxia Yang, Jingren Zhou, and Xia
Hu. 2019. Is a single vector enough? exploring node polysemy for network
embedding. In KDD. 932–940.

[28] Fuyu Lv, Taiwei Jin, Changlong Yu, Fei Sun, Quan Lin, Keping Yang, and Wil-
fred Ng. 2019. SDM: Sequential deep matching model for online large-scale
recommender system. In CIKM. 2635–2643.

[29] Jianxin Ma, Chang Zhou, Peng Cui, Hongxia Yang, and Wenwu Zhu. 2019. Learn-
ing disentangled representations for recommendation. In NIPS. 5711–5722.

[30] Aaron F McDaid, Derek Greene, and Neil Hurley. 2011. Normalized mutual in-
formation to evaluate overlapping community finding algorithms. arXiv preprint
arXiv:1110.2515 (2011).

[31] Covington Paul, Adams Jay, and Sargin Emre. 2016. Deep neural networks for
YouTube Recommendation. In RecSys. 191–198.

[32] Steffen Rendle. 2010. Factorization machines. In ICDM. IEEE, 995–1000.
[33] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2010. Factor-

izing personalized markov chains for next-basket recommendation. InWWW.
811–820.

[34] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. 2017. Dynamic routing
between capsules. In NIPS. 3856–3866.

[35] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-based
collaborative filtering recommendation algorithms. In WWW. 285–295.

[36] J Ben Schafer, Dan Frankowski, Jon Herlocker, and Shilad Sen. 2007. Collaborative
filtering recommender systems. In The adaptive web. Springer, 291–324.

[37] Suvash Sedhain, Aditya Krishna Menon, Scott Sanner, and Lexing Xie. 2015.
Autorec: Autoencoders meet collaborative filtering. In WWW. 111–112.

[38] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.
2019. BERT4Rec: Sequential recommendation with bidirectional encoder repre-
sentations from transformer. In CIKM. 1441–1450.

[39] Qiaoyu Tan, Ninghao Liu, and Xia Hu. 2019. Deep Representation Learning for
Social Network Analysis. Frontiers in Big Data 2 (2019), 2.

[40] Qiaoyu Tan, Ninghao Liu, Xing Zhao, Hongxia Yang, Jingren Zhou, and Xia Hu.
2020. Learning to Hash with Graph Neural Networks for Recommender Systems.
In WWW. 1988–1998.

[41] Qiaoyu Tan, Jianwei Zhang, Ninghao Liu, Xiao Huang, Hongxia Yang, Jignren
Zhou, and Xia Hu. 2021. Dynamic memory based attention network for sequential
recommendation. In AAAI.

[42] Jiaxi Tang and Ke Wang. 2018. Personalized top-n sequential recommendation
via convolutional sequence embedding. In WSDM. 565–573.

[43] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS. 5998–6008.

[44] Shoujin Wang, Liang Hu, Yan Wang, Quan Z Sheng, Mehmet A Orgun, and
Longbing Cao. 2019. Modeling Multi-Purpose Sessions for Next-Item Recommen-
dations via Mixture-Channel Purpose Routing Networks.. In IJCAI. 3771–3777.

[45] An Yan, Shuo Cheng, Wang-Cheng Kang, Mengting Wan, and Julian McAuley.
2019. CosRec: 2D Convolutional Neural Networks for Sequential Recommenda-
tion. In CIKM. 2173–2176.

[46] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In KDD. 974–983.

[47] Feng Yu, Qiang Liu, Shu Wu, Liang Wang, and Tieniu Tan. 2016. A dynamic
recurrent model for next basket recommendation. In SIGIR. 729–732.

[48] Wenhui Yu and Zheng Qin. 2020. Graph Convolutional Network for Recommen-
dation with Low-pass Collaborative Filters. In ICML. PMLR, 10936–10945.

[49] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. 2019. Deep learning based rec-
ommender system: A survey and new perspectives. ACM Computing Surveys
(CSUR) 52, 1 (2019), 1–38.

[50] Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, XiaoMa, Yanghui
Yan, Junqi Jin, Han Li, and Kun Gai. 2018. Deep interest network for click-through
rate prediction. In KDD. 1059–1068.

[51] Han Zhu, Xiang Li, Pengye Zhang, Guozheng Li, Jie He, Han Li, and Kun Gai.
2018. Learning tree-based deep model for recommender systems. In SIGKDD.
1079–1088.

	Abstract
	1 Introduction
	2 Related Work
	2.1 General Recommendation
	2.2 Sequential Recommendation
	2.3 Attention Mechanism

	3 Methodology
	3.1 Notations and Problem Formulation
	3.2 Sparse-Interest Framework
	3.3 Interest Aggregation Module
	3.4 Model Optimization
	3.5 Connections with Existing Models

	4 Experiments
	4.1 Experimental Setup
	4.2 Comparisons with SOTA (Q1)
	4.3 Industrial Results (Q1)
	4.4 Ablation Study (Q2)

	5 Conclusions
	References

