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ABSTRACT
Predicting users’ actions based on anonymous sessions is a challen-
ging problem in web-based behavioral modeling research, mainly
due to the uncertainty of user behavior and the limited information.
Recent advances in recurrent neural networks have led to promising
approaches to solving this problem, with long short-term memory
model proving effective in capturing users’ general interests from
previous clicks. However, none of the existing approaches explicitly
take the effects of users’ current actions on their next moves into
account. In this study, we argue that a long-term memory model
may be insufficient for modeling long sessions that usually contain
user interests drift caused by unintended clicks. A novel short-term
attention/memory priority model is proposed as a remedy, which is
capable of capturing users’ general interests from the long-term me-
mory of a session context, whilst taking into account users’ current
interests from the short-termmemory of the last-clicks. The validity
and efficacy of the proposed attention mechanism is extensively
evaluated on three benchmark data sets from the RecSys Challenge
2015 and CIKM Cup 2016. The numerical results show that our
model achieves state-of-the-art performance in all the tests.
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1 INTRODUCTION
Session-based Recommender systems (SRS) are an important com-
ponent of modern commercial online systems, usually used for
improving user experiences by making suggestions based on user
behavior encoded in browser sessions, and the recommender’s task
is to predict users’ next actions (click on an item) based on the
sequence of the actions in the current session[5, 21].Recent studies
have highlighted the importance of using recurrent neural networks
(RNNs) in a wide variety of recommender systems, among which
the application of RNNs in session-based recommendation tasks has
led to significant progress in the past few years [6, 17]. Although
RNN models have been proven useful in capturing users’ general
interests from a sequence of actions[20], learning to predict from
sessions is still a challenging problem to tackle largely due to the
uncertainty inherent in user behavior and the limited information
provided by browser sessions[18].

Based on existing literature, almost all the RNN-based SRS mo-
dels only consider modeling the session as a sequence of items,
without explicitly taking into account that users’ interests drift
with time[6], which could be problematic in practice. For example,
if a specific digital camera link has just been clicked by a user and
recorded in a session, it is highly likely that the user’s next intended
action is in response to the current action. (1) If the current action
is to browse the product description before making a purchase de-
cision, then the user is very likely to visit another digital camera
brand catalog in the next move. (2) If the current action is to add a
camera into the shopping cart, then the user’s browsing interest is
likely be changed to other peripherals such as memory cards. In
this case, to recommend another digital camera to that user would
not be a good idea, albeit that the initial intention of this session is
to buy a digital camera (as was reflected in the previous actions).

In typical SRS tasks, the session consists of a sequence of na-
med items, and the user interests is hidden in these implicit feed-
backs(e.g.,clicks). In order to further improve the predictive accuracy
of the RNN models, it is important to have the ability to learn both
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long-term interests and short-term interests of such implicit feed-
backs. As Jannach et al. [7] noted that both the users’ short-term and
long-term interests are of great importance for recommendation,
but traditional RNN architectures are not designed to distinguish
and exploit these two types of interests simultaneously [11].

In this study, we consider to solve this problem by introducing a
recent action priority mechanism into the SRS model, called Short-
Term Attention/Memory Priority (STAMP) model, which can take
into account the user’s interests in general and his/her current inte-
rests simultaneously. In STAMP, the users’ interests in general are
captured by an external memory built from all the historical clicks
in a session prefix (including the last-click), and this is where the
term "Memory" enters. The term "last-click" denotes the last action
(item) of a session prefix, the objective of SRS is to predict the "next
click" with regard to this "last-click". In this study, the embedding
of the last-click is used to represent the user’s current interests, and
the proposed attention mechanism is built on top of it. Since the
last-click is a component of the external memory it can be regarded
as short-term memory of the users’ interests. Similarly, the users’
attention built on top of the last-click can be seen as a short-term
attention. To our knowledge, this is the first effort to simultaneously
take the long/short term memory into account when constructing
a neural attention model for session-based recommendations. The
major contributions of this study are as follows:

• We introduce a short-term attention/memory priority model
that learns: (a) a uniform embedding space with items across
sessions and (b) a novel neural attention model for next-click
prediction in session-based recommender systems.

• A novel attention mechanism is proposed for implementa-
tion of the STAMP model, in which the attention weights
are calculated from the session context and being enhanced
with the current interests of the users. The output attention
vector is read as a compositional representation of the user’s
temporal interests, and is more sensitive to user’s interests
drift with time than other neural attention based solutions.
Therefore, it is capable of simultaneously capturing both
the users’ long-term interests in general (in response to the
initial purpose) and their short-term attention (current in-
terests). The validity and efficacy of the proposed attention
mechanism is verified through comparison studies.

• The proposed model is evaluated on two real world datasets,
the Yoochoose dataset from RecSys 2015, and the Diginetica
dataset from CIKM Cup 2016, respectively. Experimental
results show that STAMP achieves state-of-the-art, and the
proposed attention mechanism plays an important role.

2 RELATEDWORK
Session-based recommendation is a subtask of recommender sy-
stem, in which the recommendations are made according to the
implicit feedbacks within the user session. This is a challenging
task because the users are usually assumed to be anonymous, and
the user preferences (such as ratings) are not provided explicitly,
instead, only some positive observations (e.g. purchases or clicks)
are available to the decision makers [4]. In the past few years, an
increasing amount of research attention has been devoted to the
challenge of SRS problem, according to their modeling hypothesis,

prevalent approaches can be divided into two categorise: global
models that focused on identifying users’ interests in general [3],
and localized models that emphasize users’ temporal interests [19].

One approach of capturing user’s general interests is through
collaborative filtering (CF) methods based on users’ whole pur-
chase/click history. For example, the Matrix Factorization (MF) ap-
proach [8] uses latent vectors to represent general interests, which
are estimated through factorizing a user-item matrix consisting of
the whole historical transaction data. Another approach is called
neighborhood methods [14], which try to make recommendations
based on item similarities calculated from the co-occurrences of
items in sessions. The third approach is the Markov chain (MC)
based models[3, 15], which utilize sequential connections between
the user actions to make prediction.

The above models explore either general interests or current
interests of users. However, previous current interests based recom-
menders seldom consider the sequential interactions between items
that are not adjacent in the session, although the general interests
based recommenders are good at capturing users’ general taste,
but can hardly adapt its recommendations to users’ recent pur-
chases without explicitly modeling the adjacent connections [19].
Ideally, a good recommender should be able to explore the sequen-
tial behavior, as well as account for users’ general interests for
recommendation, because these two factors may interact with each
other to influence users’ next click. Therefore, some of the resear-
chers tried to improve the SRS models by taking into consideration
of both type of user interests. Rendle et al. [13] proposed a hybrid
model FPMC, which combined the power of MF and MC to model
both sequential behavior and general interests for next basket re-
commendation, thus achieve better performance than considering
either short-term interests or long-term interests alone. Wang et
al. [19] proposed a hybrid representation learning model, which
employs a two-layer hierarchical structure for modeling of the
sequential behavior and general interests of users from their last
transactions. However, both of them can only model local sequen-
tial behaviours between adjacent actions, without considering the
global information conveyed by the session context.

Deep neural networks have proven to be very effective in mo-
deling sequential data recently [9]. Inspired by recent advances in
natural language processing area [16], some deep learning based
solutions have been developed and some of which represent the
state-of-the-art in SRS research field [2, 5, 6, 10]. Hidasi et al.[5]
use deep recurrent neural networks with a gated recurrent unit to
model session data, which learns session representation directly
from previous clicks in the given session and provides recommen-
dations of the next action. This is the first attempt to apply RNN
networks for solving the SRS problem, thanks to the sequential mo-
deling capability provided by the RNNs, their model can take into
account the users’ historical behavior when making predictions of
the next move. Tan et al.[17]propose a data augmentation techni-
que to improve the performance of the RNNs for session-based
recommendation. Yu et al.[20]propose a dynamic recurrent model,
which applies RNN to learn dynamic representation for each basket
for user general interests at different times and captures global
sequential behavior among baskets.

Most neural network models mentioned above are implemented
in SRS by manipulating each context clicked item with the same
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operation, allowing the models to capture the relevance between
next click and previous clicks in an implicit way. Also the hidden
state in the last time step contains information about the sequence
with a strong focus on the parts nearest to the next click[1], thus
some general interest features of items with a long distance may be
forgotten. To solve this problem, a variety of models are introduced
to capture relevance between items and more accurate general
interests. Hu et al.[6] propose a neural network with wide-in-wide-
out structure (SWIWO) to learn user-session context. It constructs
the session context via combing all the item embeddings in a current
session, which gives each item a fixed weight based on the relative
distance with response to the target item. Li et al.[10] propose
an RNN based encoder-decoder model (NARM), which takes the
last hidden state from the RNN as the sequential behavior, and
uses the hidden states of previous clicks for attention computation
to capture the main purpose(general interests) in a given session.
Another recent related work is the Time-LSTM model[21] which
is a variant of the LSTM. Time-LSTM considers both short-term
interests and long-term interests by using time gates to control the
influence of last consumed item and store time intervals to model
users’ long-term interest, however the time stamp is not provided
in most real-world datasets, so it is not considered here.

Differences:Ourmodel has significant differenceswith SWIWO
and NARM. SWIWO determines the weight of each item in the ses-
sion in a fixed manner, which we consider is arguable in practice. In
STAMP, the proposed attention mechanism can help alleviate this
contradiction by explicitly considering correlation between each
historical click and the last click, and calculating dynamic weights
for given session. Alternatively, NARM combines main purpose
and sequential behavior to get the session representation which
treats them as equally important complementary features. Howe-
ver, STAMP explicitly emphasizes the current interest reflected by
the last click to capture the hybrid features of current and general
interests from previous clicks, thus explicitly introducing the im-
portance of last click into the recommender system while NARM
only captures the general interests. Short-term interests can be
enhanced in STAMP so as to accurately capture the current interest
of the user in the case of interest drift, especially in a long session.

3 METHODS
3.1 Symbolic Description
A typical session-based recommender system is built upon historical
sessions, and makes prediction based upon current user sessions.
Each session, denoted by S = [s1, s2, . . . , sN ], consists of a sequence
of actions (items clicked by the user), where si represents an item
(ID) clicked at time-step i . St = {s1, s2, . . . , st }, 1 ≤ t ≤ N denotes
a prefix of the action sequence truncated at time t with regard to
session S . Let V = {v1,v2, . . . ,v |V |} denotes a set of unique items
in the SRS system, called item dictionary.

Let X = {x1, x2, . . . , x |V |} denote the embedding vectors with
respect to the item dictionaryV . The proposed STAMPmodel learns
a d-dimensional real-valued embedding xi ∈ Rd for each of the
item i in V . Specifically, symbol xt ∈ Rd represents the embedding
of the last click st of the current session prefix St . The goal of
our models is to predict the next possible click (i.e. st+1) based on
given session prefix St . To be exact, our models are constructed
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Figure 1: Schematic illustration of the STMP model.

and trained as a classifier that learns to generate a score for each
of the candidates in item dictionary V , let ŷ = {ŷ1, ŷ2, . . . , ŷ |V |}

denote the output score vector, where ŷi corresponds to the score
of itemvi . After getting this prediction result, the elements in ŷ are
ranked in descending order, and the items corresponding to the top-
k scores are used for recommendation. For notational convenience,
we define the trilinear product of three vectors as:

< a,b, c >=
d∑
i=1

aibici = aT (b ⊙ c) (1)

where a,b, c ∈ Rd , and ⊙ denotes the Hadamard product, i.e. the
element-wise product between two vectors b and c.

3.2 The Short-Term Memory Priority Model
The proposed STAMP model is built upon a so-called Short-Term
Memory Priority model (STMP), as illustrated in Figure 1.

From Figure 1 one can see that the STMPmodel takes two embed-
dings (ms and mt ) as inputs, where ms denotes the user’s interests
in general with respect to the current session, which is defined as
the average of the external memory of the session:

ms =
1
t

t∑
i=1

xi (2)

where the term external memory means the item embedding se-
quence of the current session prefix St . The symbolmt denotes the
current interests of the user in that session, in this study, the last-
click xt is used to represent the user’s current interests : mt = xt .
Since xt is taken from the external memory of the session, we call
it the short-term memory of the user’s interests. The general in-
terests ms and current interests mt are then processed with two
MLP networks for the purpose of feature abstraction. The network
structure of the MLP cells illustrated in Figure 1 are identical to
each other, except that they have independent parameter settings.
A simple MLP without hidden layer is used for feature abstraction,
the operation on ms is defined as:

hs = f (Wsms + bs ) (3)

where hs ∈ Rd denotes the output state,Ws ∈ Rd×d is a weighting
matrix, and bs ∈ Rd is the bias vector. f (·) is a non-linear activation
function (we use tanh in this study). The state vector ht with regard
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tomt can be calculated similar to hs . And then, for a given candidate
item xi ∈ V , the score function is defined as:

ẑi = σ (< hs , ht , xi >) (4)

where σ (·) denotes the sigmoid function. Let ẑ ∈ R |V | denote
the vector that consists of the trilinear products ẑi , in which each
ẑi (i ∈ [1, . . . , |V |]) represents the unnormalized cosine similarity
between the representation of the weighted user interests with
regard to the current session prefix St and the candidate item xi .
Then it is processed by a softmax function to obtain the output ŷ:

ŷ = so f tmax(ẑ) (5)

where ŷ ∈ R |V | denotes the output vector of the model, which
represents a probability distribution over the items vi ∈ V , each
element ŷi ∈ ŷ denotes the probability of the event that item vi is
going to appear as the next-click in this session.

For any given session prefix St ∈ S (t ∈ [1, . . . ,N ]), the loss
function is defined as the cross-entropy of the prediction results ŷ:

L(ŷ) = −

|V |∑
i=1

yi loд(ŷi ) + (1 − yi )loд(1 − ŷi ) (6)

where y denotes a one-hot vector exclusively activated by st+1 ∈ S
(the ground truth). For example, if st+1 denotes the i-th element vi
in item dictionary V , then yk = 1, if i == k , and yk = 0 if i , k .
An iterative stochastic gradient descent (SGD) optimizer is then
performed to optimize the cross-entropy loss.

From the definition of the STMP model (Equation 4) one can
see that it makes predictions on the next-click based on the in-
ner product of the candidate item and the weighted user interests,
where the weighted user interests are represented through bilinear
composition of the long-term memory (averaged historical clicks)
and the short-term memory (the last-click). The validity of this
trilinear composition model is verified in Section 4.5, the experi-
mental results demonstrate that the proposed short-term memory
priority mechanism can be very effective in capturing users’ tem-
poral interests that benefit the next-click prediction, and it achieves
state-of-the-art performance on all the benchmark data sets.

However, as can be seen from Equation 2, when modeling the
user’s interests in general ms from the external memory of the
current session, the STMP model treats each item in the session
prefix as equally important, which we consider would be proble-
matic in capturing the user’s interests drift (probably caused by
unintended clicks), especially in case of long sessions. Therefore,
we propose an attention model to tackle this problem — which
has been demonstrated effective in capturing the attention drift in
long sequences. The proposed attention model is designed based
on the STMP model, and it follows the same idea as STMP in that
it also gives priority to short-term attention, hence we call it the
Short-Term Attention/Memory Priority Model (STAMP).

3.3 The STAMP Model
The architecture of the STAMP model is illustrated in Figure 2. As
can be seen from Figure 2, the only difference between these two
models is that in the STMP model the abstract feature vector of
user’s interests in general (the state vector hs ) is calculated from
the average of the external memoryms , while in STAMP model the
hs is calculated from an attention based user’s interests in general
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ˆ
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Figure 2: Schematic illustration of the STAMP model.

(a real-valued vector ma ) as depicted in 2, which is produced by
the proposed attention mechanism, called attention net.

The proposed attention net consists of two components: (1) a
simple feed-forward neural network (FNN) that is responsible for
generating attention weights for each of the items within the cur-
rent session prefix St , and (2) an attention composite function that
is responsible for calculating the attention based user’s interests in
general ma . The FNN used for attention computation is defined as:

αi =W0σ (W1xi +W2xt +W3ms + ba ) (7)

where xi ∈ Rd denotes the i-th item si ∈ St , xt ∈ Rd denotes the
last-click, W0 ∈ R1×d is a weighting vector, W1,W2,W3 ∈ Rd×d

are weighting matrices, ba ∈ Rd is a bias vector, and σ (·) denotes
the sigmoid function. αi represents the attention coefficient of
item xi within the current session prefix. From Equation 7 one
can see that the attention coefficients of the items in a session
prefix are calculated based on the embedding of the target item
xi , the last-click xt and session representation ms , therefore, it is
capable of capturing the correlations between the target item and
the long/short term memory of the user’s interests. Note that in
Equation 7, the short-term memory is explicitly considered, which
is distinctly different from the related works, and this is why the
proposed attention model is called the short-term attention priority
model.

After obtaining the attention coefficients vector α = (α1,α2, . . . ,
αt )with respect to the current session prefix St , the attention based
user’s interests in general ma with regard to the current session
prefix St can be calculated as follows, and then add the ms in it:

ma =

t∑
i=1

αixi (8)

3.4 The Short-Term Memory Only Model
To evaluate the validity of the basic idea of this study, that is, as-
signing a priority to the short-term attention/memory of the users’
behavior whenmaking decisions according to the session (sequence
of actions), in this section, we propose a Short-Term Memory Only
(STMO) model, which makes predictions of the next-click st+1 only
based on the last-click st of the current session prefix St .

Similar to the STMP model, a simple MLP without a hidden layer
is used for feature abstraction in the STMO model. The MLP takes
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the last-click st as input, and outputs a vector ht ∈ Rd just as the
"MLP CELL B" in STMP (see Figure 1), defined as:

ht = f (Wtxt + bt ) (9)

where ht denotes the output state, Wt ∈ Rd×d is a weighting
matrix, and bt ∈ Rd is the bias vector. f (·) denotes the activation
function tanh. Then for a given candidate item xi ∈ V , the score
function is defined as the inner product between xi and ht :

ẑi = hTt xi (10)

After obtaining the score vector ẑ ∈ R |V | , one can make pre-
dictions based on the ranking list calculated with Equation 5, or
optimize the parameters of the model based on Equation 6, just like
the situation in STMP model.

4 EXPERIMENTS
4.1 Datasets and Data Preparation
We evaluate the proposed models on two datasets, the first one is
called Yoochoose from the RecSys’15 Challenge 1, which consists
of six months of click-streams gathered from an e-commerce web
site, where the training set only contains session events. Another
one is the Diginetica dataset coming from the CIKM Cup 20162, for
which only the transaction data is used in this study.

Following [5] and [10], we filter out sessions of length 1 and
items that appear less than 5 times in both of the datasets. The
test set of Yoochoose consists of the sessions of subsequent days
with respect to the training set, and we filter out clicks (items)
that did not appear in the training set. And for Diginetica, the only
difference is that we use the sessions of subsequent week for testing.
After the pre-processing phase, there remains 7,966,257 sessions of
31,637,239 clicks on 37,483 items in Yoochoose dataset, and 202,633
sessions of 982,961 clicks on 43,097 items in Diginetica dataset.

Same as [17], we use a sequence splitting preprocess that for
an input session S = {s1, s2, . . . , sn }, we generate the sequences
and corresponding labels([s1], s2), ([s1, s2], s3)... ([s1, s2 , ...,sn−1],
sN ) for training and testing on both datasets, which proves to be
effective. Because the Yoochoose training set is quite large and
training on the recent fractions yields better results than training
on the entire fractions as per the experiments of [17], we use the
recent fractions 1/64 and 1/4 of training sequences. The statistics
of the three datasets are shown in Table 1.

4.2 Baselines
The following models, including the state-of-art and closely related
work, are used as baselines to evaluate the performance of the
proposed STAMP model :

• POP: A naive SRS model that always recommends items
based on occurrence frequency in the training set.

• Item-KNN[14]: An item-to-item model which recommends
items similar to the existing items based on cosine similarity
between the candidate item and the existing items within
the session. A constraint is included to avoid coincidental
high similarities between rarely visited items as in [4, 20].

1http://2015.recsyschallenge.com/challege.html
2http://cikm2016.cs.iupui.edu/cikm-cup

Table 1: Statistics of the experiment datasets.

Dataset Yoochoose 1/64 Yoochoose 1/4 Diginetica
# train 375,073 5,969,416 719,470
# test 55,898 55,898 60,858
# clicks 565,552 7,980,529 982,961
# items 17,694 30,660 43,097
avg. len. 6.16 5.71 5.12

• FPMC[13]: A state-of-the-art hybrid model for next-basket
recommendation. In order to make it work on session-based
recommendation, we do not consider the user latent repre-
sentations when computing recommendation scores.

• GRU4Rec[5]: An RNN based deep learning model for ses-
sion based recommendation, which consists of GRU units, it
utilizes session-parallel mini-batch training process and also
employs ranking-based loss functions during the training.

• GRU4Rec+[17]: A improvedmodel based onGRU4Recwhich
adopts two techniques to improve the performance of GRU4Rec,
including a data augmentation process and a method to ac-
count for shifts in the input data distribution.

• NARM[10]: An RNN based state-of-the-art model which em-
ploys attentionmechanism to capture main purpose from the
hidden states and combines it with the sequential behavior
as final representation to generate recommendations.

4.3 Evaluation
We use the following metrics for evaluation of the performance of
the SRS models, which are also widely used in other related works.

P@20: The P@K score is widely used as a measure of predictive
accuracy in SRS area. P @ K represents the proportion of test cases
which has the correctly recommended items in a top k position in a
ranking list. In this paper, P@20 is used for all the tests, defined as:

P@K =
nhit
N

(11)

where N denotes the number of test data in the SRS system G, nhit
denotes the number of cases which have the desired items in top K
ranking lists, a hit occurs when t appears in the top K position of
the ranking list ofG.

MRR@20: The average of reciprocal ranks of the desired item
t . The reciprocal rank is set to zero if the rank is above 20.

MRR@K =
1
N

∑
t ∈G

1
Rank(t)

(12)

The MRR is a normalized score of range [0, 1], an increase in its
value reflects that the majority “hits” will appear higher in the
ranking order of the recommendation list, which indicates a better
performance of the corresponding recommender system.

4.4 Parameters
The hyper-parameters are optimized via extensive grid search on
all the data sets, and the best models are selected by early stopping
based on the P@20 score on the validation set. Hyper-parameter
ranges for the grid search are the following: embedding dimension
d in {50, 100, 200, 300}, learning rate η in {0.001, 0.005, 0.01, 0.1, 1},
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Table 2: Next-click prediction on 3 benchmark data sets.

Datasets Yoochoose 1/64 Yoochoose 1/4 Diginetica
Measures P@20 MRR@20 P@20 MRR@20 P@20 MRR@20
POP 6.71 1.65 1.33 0.30 0.91 0.23
Item-KNN 51.60 21.81 52.31 21.70 28.35 9.45
FPMC 45.62 15.01 − − 31.55 8.92
GRU4Rec 60.64 22.89 59.53 22.60 43.82 15.46
GRU4Rec+ 67.84 29.00 69.11 29.22 57.95 24.93
NARM 68.32 28.76 69.73 29.23 62.58 27.35
STMO 64.22 25.81 66.22 26.69 58.62 25.90
STMP 67.79 28.63 69.19 28.94 60.91 25.34
STAMP 68.74 29.67 70.44 30.00 62.03 27.38

learning rate decay λ in {0.75, 0.8, 0.85, 0.9, 0.95, 1.0}. According
to the averaged performance, in this study we use the following
hyper-parameters for all the tests on two datasets : {d : 100,η :
0.005, λ : 1.0}. The mini-batch settings are: batch size : 512, epoch :
30. All weighting matrices are initialized by sampling from a normal
distribution N (0, 0.052), and all biases are set to zeros. All the items
embeddings are initialized randomly with a normal distribution
N (0, 0.0022), which are then jointly trained with other parameters.

4.5 The Next-Click Prediction
To demonstrate the overall performance of the proposed model,
we compare it with the state-of-the-art item recommendation ap-
proaches, and the numerical results on all of the benchmark data
sets are illustrated in Table 2, in which the best result of each
column is highlighted in boldface. As one can see from Table 2,
STAMP achieves state-of-the-art performances in terms of P@20
and MRR@20 on both of the Yoochoose data sets and the Diginetica
dataset, which verifies the efficacy and validity of the proposed
model. The following observations can be made from table 2:

The performance of traditional methods such as Item-KNN and
FPMC are not competitive, as they only outperform the naive POP
model. These results help verify the importance of taking the user’s
behavior (interactions)into consideration in session-based recom-
mendation tasks as the results show that making recommendations
solely based on co-occurrence popularity of the items (POP), or
simply taking transitions over successive items could be very pro-
blematic in making accurate recommendations. In addition, such
global solutions can be time and memory consuming, making them
not scalable to for large-scale datasets.

All of the neural network baselines significantly outperform con-
ventional models, thus proving the effectiveness of deep learning
technology in this field. GRU4Rec+ improves the performances of
GRU4Rec by using the data augmentation techniques that split a sin-
gle session into several sub-sessions for training. While GRU4Rec+
does not modify the model structure of GRU4Rec, they both only
take the sequential behavior into account which may encounter
difficulties with users’ interest drift. NARM achieves the best per-
formances among the baselines, because it not only models the
sequential behavior using RNN with GRU units but also uses at-
tention mechanism to capture main purpose, which indicates the
importance of main purpose information in recommendations. This

Table 3: The results of P@K, MRR@K when K=5,10.

Model Metrics Yoochoose 1/64 Yoochoose 1/4 Diginetica

NARM P@5 44.34 44.34 40.67
MRR@5 26.21 26.08 25.02

STAMP P@5 45.69 46.39 41.04
MRR@5 27.26 27.47 25.21

NARM P@10 57.50 57.83 51.91
MRR@10 27.97 28.10 26.53

STAMP P@10 58.07 59.62 52.07
MRR@10 28.92 29.24 26.69

is reasonable as part of items in the current session may reflect the
user’s main purpose and relate to the next item.

Among our proposed models, the STAMP model obtains the hig-
hest P@20 andMRR@20 on Yoochoose dataset in 2 experiments and
achieves comparable results on the Diginetica dataset. The STMO
model cannot capture general interest information from previous
clicks in the current session, so it generates the same recommen-
dation whenever it encounters the same last-click, although given
different sessions. Unsurprisingly the model has the worst perfor-
mance in our proposed models, since it cannot take advantage of
the general interest information. But compared with traditional
machine learning methods such as Item-KNN and FPMC, STMO
achieves significantly better performances which demonstrates the
ability of our proposed model framework to learn effective uni-
form item embedding representation. The STMP as an extension to
STMO simply uses an average pooling function to generate session
representation as the long-term interest and applies last-click infor-
mation to capture short-term interest. It outperforms STMO in all
three experiments and performs comparably with GRU4Rec+ but
a little inferior to NARM. As expected, considering both session
context information and last click information is suitable for this
task as STMP is able to better make the session-based recommen-
dations for a given session. Compared with STMP, STAMP applies
item-level attention mechanism and achieves 0.95%, 1.25%, 1.12%
improvements on P@20 and 1.04%, 1.06%, 2.04% on MRR@20 in
three experiments respectively. The results show that the session
representation generated in this way is more effective than average
pooling function, which confirms that not all items in the current
session are equally important in generating the next recommen-
dation, and part of the important items can be captured by the
proposed attention mechanism to model useful features of interest;
the state-of-the-art results prove the validity of STAMP.

4.6 Compare STAMP with NARM
Session-based recommender systems have become an indispensable
part of many e-commerce systems, helping users to sort out items of
interest from large inventories. In fact, there are always more than
105 items in an e-commerce website and most users are only inte-
rested in viewing recommendations on the first page of real-world
recommender systems [6]. In order to verify the performance of
our proposed STAMP model and the recent state-of-the-art NARM
model in real production environment, where recommendation sys-
tems can only suggest a few items at once, the relevant item should
be amongst the first few items in the recommendation list[12]. We
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Table 4: Runtime of each training epoch.

Method Dataset Time (seconds)

NARM
Yoochoose 1/64 155.3
Yoochoose 1/4 961.4
Diginetica 99.6

STAMP
Yoochoose 1/64 33.3
Yoochoose 1/4 356.1
Diginetica 52.0

therefore evaluate the recommendation quality in terms of P@5,
MRR@5, P@10 and MRR@10 in trying to simulate the practical
situation. The results are summarized in Table 3, and argue that the
experimental results may to some extent reflect their performance
in the real production environment. We can observe that STAMP
performs well on this mission and much more competitively than
NARM when evaluated under stricter rules in an simulated pro-
duction environment. Our model performs consistently better than
NARM and shows obvious advantages in three experiments which
demonstrates the effectiveness of considering both general interests
and short-term interests, and the validity of the learned item embed-
dings. The results prove that the proposed STAMP tends to make
more accurate recommendations as seen in the above experimental
results and the main results in subsection 4.5.

We also record the runtime of the recurrent neural model NARM
and the proposed STAMP approach. We implement both models
with the same 100-dimensional embedding vectors, and test them
on the same GPU server. The training time of each epoch on three
datasets is given in Table 4,which illustrates that STAMP is more
efficient than NARM. We argue that this is because the NARM mo-
del contains a lot of complex operations in each GRU unit, and our
proposed model is simpler and faster as it introduces a simplified
neural model to save the cost of recurrent calculations in dealing
with sequential inputs. All above results imply that STAMP may
be more suitable for practical application since computational effi-
ciency is crucial in real-world session-based recommender systems,
which always comprise of large amounts of sessions and items.

4.7 Effects of the last click
In this section, we design a series of contrast models to verify the
validity of applying the last click information on the basis of session
context to make session-based recommendations:

• STMP-: On the basis of STMP, not using last click item
embedding in the trilinear layer.

• STMP: The STMP model proposed in the paper.
• STAMP-: On the basis of STAMP, not using last click item
embedding in the trilinear layer.

• STAMP: The STAMP model proposed in the paper.
The numerical results in Table 5 show that all the models in

which the last click is combined with the session context vector
have better performance than those without. The results prove that
employing the last click positively contributes to recommendations
of a given session. Our models are based on simultaneously cap-
turing long-term and short-term interest and enhancing the last
click information, which we believe is advantageous in handling

Table 5: Impacts of the last-click.

Datasets Yoochoose 1/64 Yoochoose 1/4 Diginetica
Measures P@20 MRR@20 P@20 MRR@20 P@20 MRR@20
STMP- 60.59 21.70 62.92 24.52 57.20 21.55
STMP 67.79 28.63 69.19 28.94 60.91 25.34
STAMP- 65.19 24.95 67.96 26.67 60.15 24.47
STAMP 68.74 29.67 70.44 30.00 62.03 27.38

long sessions as users’ interest may change during a long browsing
period and the user’s next action may be more related to last click
that reflects a short-term interest. In order to verify the effects of
last click, we investigate the P@20 with different session lengths
and the results on Yoochoose 1/64 dataset are shown in Figure 3.

We first present experimental results varying the length of ses-
sions on STMP, STAMP and NARM as shown by Figure 3(a). We
can observe that when the length of sessions is above 20 the per-
formance of NARM quickly decreases in contrast with STMP and
STAMP. This suggests that short-term interests priority based mo-
dels may be more powerful in handling long sessions than NARM.
On the other hand, in Figure 3(b) we find that the P@20 results
of STMP and STAMP when the lengths are between 1 to 30 are
significantly higher than each corresponding model without fee-
ding last click into the trilinear layer, respectively. The reason is
that with current interests captured in last click or session repre-
sentation, STMP and STAMP may better model the user interest
for the next click recommendation. For longer sessions lengths,
the performance margins between STMP- and STMP and between
STAMP- and STAMP become larger. This proves that although
it is important to capture general interests from the session con-
text, explicitly taking advantage of temporal interests can enhance
the quality of recommendations. Moreover, STAMP- outperforms
STMP- which results from the hybrid interests captured by the
attention mechanism in STAMP- while STMP- only considers the
general interests;this demonstrates the importance of the last click
information in the session-based recommendation task.

4.8 Comparison among Proposed Models
To further verify the efficacy and validity of different proposed
models being those that capture user interests from only last click,
those that combine last click with session context, and lastly those
that apply attention mechanism; we compare the models by ma-
king comparison studies on different session lengths to show their
performances and the advantages in different situations. To achieve
this purpose, we partition sessions into two groups: ’Short’ indi-
cates that the length of sessions is 5 events or less while ’Long’
represents sessions having more than 5 events, where 5 is almost
an average length of total sessions in all original data sets. The
statistics on the percentage of sessions belonging to Short group
are 70.10% and 76.40%, and to Long are 29.90% and 23.60% for both
test datasets of Yoochoose and Diginetica. For each approach, we
compute the results of P@20 and MRR@20 for each length group
on each data set. Experimental results are illustrated in Figure 4 (a)
and (b) for Yoochoose and Diginetica respectively.

Figure 4 (a) shows the results on Yoochoose. We can see that all
methods obtain lower P@20 and MRR@20 results in Long group in
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Figure 3: The P@20 evaluated on different lengths of sessi-
ons’ test cases in Yoochoose 1/64.
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Figure 4: P@20 andMRR@20 of different session lengths. (a)
on Yoochoose, (b) on Diginetica.

comparison to Short group, highlighting the challenge of making
session-based recommendations for long sessions on this dataset.
We suspect it may because of difficulty in capturing users’ interest
drift as the session grows in length. In addition both STMP and
STAMP outperform STMO in two groups and the margin becomes
wider as the session length increases, meaning that a model consi-
dering both general and current interests may be more powerful
in handling long sessions, in comparison to only applying the last
click information for recommendations. This confirms our intuition
that session context and last click information can simultaneously
and effectively be used to learn user interests and predict the next
selected item in session-based recommendations.

Figure 4 (b)shows the results on Diginetica. STMO has better
MRR@20 results than STMP, and the gap grows from 0.38% to

Table 6: Statistics of sessions have repeated items.

Dataset 2 3 4 5 >5
Diginetica-train 0.1839 0.3272 0.4374 0.5229 0.7016
Diginetica-test 0.1880 0.3304 0.4420 0.5351 0.7149
YooChoose-train 0.1796 0.3298 0.4272 0.5091 0.7181
YooChoose-test 0.1770 0.3166 0.4139 0.5015 0.7563

1.11% with increasing session length. This performance probably
indicates that average aggregation in STMP has its disadvantages
which influence the rank of correct items in recommendations,
also the results of STMO may imply the validity of the short-term
interests for making accurate recommendations. Overall, STAMP
is still the best performing model which also highlights the need
for effective session representation to obtain hybrid interests, this
proves the advantages of the proposed attention mechanism.

Furthermore, Figure 4 shows that the trend between Short and
Long group on the Yoochoose dataset is much different from that
on the Diginetica dataset. To explain this phenomenon, we analyze
the two datasets and show the ratio of sessions which have repeated
clicks(i.e. the click appears at least twice within a session) in the two
datasets with respect to the session length. From Table 6 we can see
that the ratio of sessions which have repeated clicks in Yoochoose
is smaller on Short group and larger on Long group than those in
Diginetica dataset. From these results, we find that repeated clicks
in the session have an impact on the recommendations, which have
an inversely proportional ratio to model performance. It may be
because repeated clicks may emphasize invalid information from
unimportant items and make it difficult to capture user interests
associated with the next action. In STAMP, we model the user
interests using short-term attention priority, whereby the attention
mechanism selects important items from the given session to model
user interests. Both of these can effectively mitigate the impact of
repeated clicks in a session. Conversely, only last click or average
click information is used in other approaches, these models usually
lose important information and are unable to overcome problems
associated with repeated clicks. This proves the validity of short-
term attention priority and the proposed attention mechanism.

4.9 Further Investigation
In this section, we repeatedly selected randommultiple sets of exam-
ples from the Yoochoose test sets for analysis, and they consistently
showed the same patterns. Figure 5 illustrates the attention results
of the proposed item-level attention mechanism and its advantage.

In Figure 5, the depth of the color indicates the importance of an
item, the darker the color the more important an item is. Because
it’s hard to directly evaluate the association between each context
item and the target item in the absence of item specific information,
the validity of the attention mechanism can be partially explained
based on the category of an item. For example, in session 11255991
we can observe that the items which have the same category with
the target item have larger attention weights than other items. The
category of item can reflect the interest of the user to a certain
extent, and the higher weight of the item with the same category
as the target item can partially prove that the attention mechanism
can capture user interests for the next action.
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Figure 5: Attention visualization. Attention weights is used
for color-coding, the depth of the color indicates the impor-
tance of an item. The numbers above the bar are session IDs,
and the category ID of each item is given below the item.

Our method is capable of highlighting a number of factors in de-
termining the next action as shown in Figure 5. Firstly, not all items
are important in determining the next action and our method is able
to pick important items and ignore unintended clicks. Secondly,
although some important items are not near the current action in a
session they can be flagged as important by our method, we believe
that this demonstrates that our model is capable of capturing the
users’ interests in general in response to the initial or main purpose.
Thirdly, items whose position is close to the end of the session often
have larger weights, especially the last click item in a session with
a long length. This proves our intuition that the user’s intended
action may be more in response to the current action. It shows
that the proposed attention mechanism is sensitive to interests
drift in a given session and correctly captures the current interests
which is one of the reasons why STAMP can outperform other
models which mainly focus on long-term interest. Moreover, the
results illustrate that important items can be captured regardless of
their position(i.e beginning or end of session) in a given session(e.g.
session 11255788, 11255819). This proves our conjecture that the
proposed item-level attention mechanism can capture pivotal items
from a global perspective to construct hybrid features of general
interests and current interests. Therefore based on the visualization
results, we argue that the proposed item-level attention mechanism
captures important parts for predicting next action in a session by
computing attention weights, enabling the model to consider both
long-term interest and short-term interest and make more accurate
and effective recommendations.

5 CONCLUSION
In this paper, we propose a short-term attention/memory priority
model for session-based recommendations. Two important findings
can be made from the study: (1) The next move of a user is mostly
affected by the last-click of a session prefix, and our model can ef-
fectively utilize such information through the temporal interests re-
presentation. (2) The proposed attention mechanism can effectively
capture long-term and short-term interests of a session, empirical

results prove that with the help of the attention mechanism, our
model achieves state-of-the-art performance on all datasets.
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