
Sampling-Bias-Corrected Neural Modeling for Large Corpus
Item Recommendations

Xinyang Yi, Ji Yang, Lichan Hong, Derek Zhiyuan Cheng, Lukasz Heldt, Aditee Kumthekar, Zhe

Zhao, Li Wei, Ed Chi

Google, Inc.

{xinyang,jiyangjy,lichan,zcheng,heldt,aditeek,zhezhao,liwei,edchi}@google.com

ABSTRACT
Many recommendation systems retrieve and score items from a

very large corpus. A common recipe to handle data sparsity and

power-law item distribution is to learn item representations from

its content features. Apart from many content-aware systems based

on matrix factorization, we consider a modeling framework using

two-tower neural net, with one of the towers (item tower) encoding

a wide variety of item content features. A general recipe of training

such two-tower models is to optimize loss functions calculated from

in-batch negatives, which are items sampled from a random mini-

batch. However, in-batch loss is subject to sampling biases, poten-

tially hurting model performance, particularly in the case of highly

skewed distribution. In this paper, we present a novel algorithm for

estimating item frequency from streaming data. Through theoreti-

cal analysis and simulation, we show that the proposed algorithm

can work without requiring fixed item vocabulary, and is capable of

producing unbiased estimation and being adaptive to item distribu-

tion change. We then apply the sampling-bias-corrected modeling

approach to build a large scale neural retrieval system for YouTube

recommendations. The system is deployed to retrieve personal-

ized suggestions from a corpus with tens of millions of videos. We

demonstrate the effectiveness of sampling-bias correction through

offline experiments on two real-world datasets. We also conduct

live A/B testings to show that the neural retrieval system leads to

improved recommendation quality for YouTube.

CCS CONCEPTS
• Information systems→ Information retrieval.

KEYWORDS
Recommender systems; Information Retrieval; Neural Networks

ACM Reference Format:
Xinyang Yi, Ji Yang, Lichan Hong, Derek Zhiyuan Cheng, Lukasz Heldt,

Aditee Kumthekar, Zhe Zhao, Li Wei, Ed Chi. 2019. Sampling-Bias-Corrected

Neural Modeling for Large Corpus Item Recommendations. In Thirteenth
ACM Conference on Recommender Systems (RecSys ’19), September 16–20,
2019, Copenhagen, Denmark. ACM, New York, NY, USA, 9 pages. https:

//doi.org/10.1145/3298689.3346996

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

RecSys ’19, September 16–20, 2019, Copenhagen, Denmark
© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6243-6/19/09.

https://doi.org/10.1145/3298689.3346996

1 INTRODUCTION
Recommendation systems help users discover content of interest

across many internet services, including video recommendations

[12, 18], app suggestions [9], and online advertisement targeting

[38]. In many cases, these systems connect billions of users to

items from an extremely large corpus of content, often in the scale

of millions to billions, under stringent latency requirements. A

common practice is to treat the recommendation as a retrieval-and-

ranking problem, and design a two-phase system [9, 12]. That is,

a scalable retrieval model first retrieves a small fraction of related

items from a large corpus, and a fully-blown ranking model re-

ranks the retrieved items based on one or multiple objectives such

as clicks or user-ratings. In this work, we focus on building a real-

world learned retrieval system for personalized recommendation

that scales up to millions of items.

Given a triplet of {user , context , item}, a common solution to

build a scalable retrieval model is: 1) learn query and item repre-

sentations for {user , context} and {item} respectively; and 2) use a
simple scoring function (e.g., dot product) between query and item

representations to get recommendations tailored for the query. Con-

text often represents variables with dynamic nature, such as time

of day, and devices users are using. The representation learning

problem is typically challenging in two ways: 1) The corpus of items

could be extremely large for many industrial-scale applications; 2)

Training data collected from users’ feedback is very sparse for most

items, and thus causes model predictions to have large variance

for long-tail content. Facing the well-reported cold-start problem,

real-world systems need to be adaptive to data distribution change

to better surface fresh content.

Inspired by the Netflix prize [32], matrix factorization (MF) based

modeling has been widely adopted for learning query and item la-

tent factors in building retrieval systems. Under the MF framework,

a body of recommendation research (e.g., [21, 34]) addresses the

aforementioned challenges in learning from a large corpus. The

common idea is to leverage the content features of query and item.

Content features can be roughly defined as a wide variety of fea-

tures describing items beyond item id. For example, content features

of a video can be the visual and audio features extracted from video

frames. MF-based models are usually only capable of capturing

second-order interactions of features, and thus have limited power

in representing a collection of features with various formats.

In recent years, motivated by the success of deep learning in

computer vision and natural language processing, there is a large

amount of work applying deep neural networks (DNNs) to recom-

mendations. Deep representations are well suited for encoding com-

plicated user states and item content features in low-dimensional

embedding space. In this paper, we explore the applications of

https://doi.org/10.1145/3298689.3346996
https://doi.org/10.1145/3298689.3346996
https://doi.org/10.1145/3298689.3346996

RecSys ’19, September 16–20, 2019, Copenhagen, Denmark Yi, et al.

......

...

...

...

...

... ...

Figure 1: A two-tower DNN model for learning query and
candidate representations.

two-tower DNNs in building retrieval models. Figure 1 provides

an illustration of the two-tower model architecture where left and

right towers encode {user , context} and {item} respectively. Two-
tower DNN is generalized from the multi-class classification neural

network [19], a multi-layer perceptron (MLP) model, where the

right tower of Figure 1 is simplified to a single layer with item em-

beddings. As a result, the two-tower model architecture is capable

of modeling the situation where label has structures or content

features. MLP model is commonly trained with many sampled neg-

atives from a fixed vocabulary of items. In contrast, with deep item

tower, it is typically inefficient to sample and train on many nega-

tives due to item content features and shared network parameters

for computing all item embeddings.

We consider batch softmax optimization, where item probability

is calculated over all items in a random batch, as a general recipe of

training two-tower DNNs. However, as shown in our experiments,

batch softmax is subject to sampling bias and could severely restrict

the model performance without any correction. Importance sam-

pling and the corresponding bias reduction have been studied in

MLP model [4, 5]. Inspired by these works, we propose to correct

sampling bias of batch softmax using estimated item frequency. In

contrast to MLP model where the output item vocabulary is station-

ary, we target the streaming data situation with vocabulary and

distribution changes over time. We propose a novel algorithm to

sketch and estimate item frequency via gradient descent. In addition,

we apply the bias-corrected modeling and scale it to build a per-

sonalized retrieval system for YouTube recommendations. We also

introduce a sequential training strategy, designed to incorporate

streaming data, along with the indexing and serving components

of the system.

The major contributions of this paper include:

• Streaming Frequency Estimation. We propose a novel

algorithm to estimate item frequency from a data stream,

subject to vocabulary and distribution shifts. We offer analyt-

ical results to show the variance and bias of the estimation.

We also provide simulation that demonstrates the efficacy

of our approach in capturing data dynamics.

• Modeling Framework. We provide a generic modeling

framework for building large-scale retrieval systems. In par-

ticular, we incorporate the estimated item frequency in a

cross entropy loss for the batch softmax to reduce the sam-

pling bias of in-batch items.

• YouTube Recommendation. We describe how we apply

the modeling framework to build a large-scale retrieval sys-

tem for YouTube recommendations. We introduce the end-

to-end system including the training, indexing, and serving

components.

• Offline and Live Experiments. We perform offline exper-

iments on two real-world datasets and demonstrate the ef-

fectiveness of sampling bias correction. We also show that

our retrieval system built for YouTube leads to improved

engagement metrics in live experiments.

2 RELATEDWORK
In this section, we give an overview of the related work, and high-

light the connections to our contributions.

2.1 Content-Aware and Neural Recommenders
Utilizing content features of users and items is critical for improving

generalization and mitigating cold-start problems. There is a line of

research focusing on incorporating content features in the classic

matrix factorization framework [23]. For instance, the generalized

matrix factorization models, e.g., SVDFeature [8] and Factorization

Machine [33], can be applied to incorporate item content features.

These models are able to capture up to bi-linear, i.e., second-order,

interactions between features. In recent years, deep neural networks

(DNNs) have been shown effective in improving recommendation

accuracy. Due to the nature of being highly nonlinear, DNNs offer

a larger capacity for capturing complicated feature interactions

[6, 35], compared to traditional factorization approaches. He et al.

[21] directly applies the intuition of collaborative filtering (CF),

and offers a neural CF (NCF) architecture for modeling user-item

interactions. In theNCF framework, users and items embeddings are

concatenated and passed through a multi-layer neural network to

get the final prediction. Our work differs from NCF in two aspects:

1) we leverage a two-tower neural network for modeling user-

item interactions so that the inference can be conducted over a

large corpus of items in sub-linear time; 2) learning NCF relies on

point-wise loss (such as squared or log loss), while we introduce a

multi-class softmax loss and explicitly model item frequency.

On a separate line of work, deep and recurrent models such as

LSTM are applied to incorporate temporal information and histor-

ical events in recommendations, e.g., [12, 14]. Besides the learn-

ing of separate user and item representations, there is another set

of works focusing on designing neural networks particularly for

learned to rank systems. Notably, multi-task learning has been a

central technique in optimizing multiple objectives for complicated

recommenders [27, 28]. Cheng et al. [9] introduces a wide-n-deep

framework with jointly trained wide linear models and deep neural

networks.

Sampling-Bias-Corrected Neural Modeling for Large Corpus Item Recommendations RecSys ’19, September 16–20, 2019, Copenhagen, Denmark

2.2 Extreme Classification
Softmax is one of the most commonly used functions in designing

models for the prediction of a large output space up to millions of

labels. Lots of research has been focusing on training softmax classi-

ficationmodels for a large number of classes, ranging from language

tasks [5, 29] to recommenders [12]. When the number of classes is

extremely large, a widely used technique to speed up training is

to sample a subset of classes. Bengio et al. [5] shows that a good

sampling distribution should be adaptive to the model’s output

distribution. To avoid the complication of computing the sampling

distribution, many real-world models apply a simple distribution

such as unigram or uniform as a proxy. Recently, Blanc et al. [7]

designs an efficient and adaptive kernel based sampling method.

Despite the success of sampled softmax in various domains, it is not

applicable to the case where label has content features. Adaptive

sampling in this case also remains an open problem. Various works

have shown that tree-based label structures, e.g., hierarchical soft-

max [30], are useful for building large-scale classification models

while significantly reducing inference time. These approaches typi-

cally require a predefined tree structure based on certain categorical

attributes. As a result, they are not suitable for incorporating a wide

variety of input features.

2.3 Two-tower Models
Building neural networks with two towers has recently become

a popular approach in several natural language tasks including

modeling sentence similarities [31], response suggestions [24], and

text-based information retrieval [17, 37]. Our work contributes to

this line of research, particularly demonstrating the effectiveness of

two-tower models in building large-scale recommenders. Compared

to many language tasks in the aforementioned literature, it is worth

noting that we focus on the problem with a much larger corpus

size, which is common in our target applications such as YouTube.

Through live experiments, we find that explicitly modeling item

frequency is critical for improving retrieval accuracy in this setting.

Yet, this problem is not well addressed in existing works.

3 MODELING FRAMEWORK
We consider a common setup for recommendation problems where

we have a set of queries and items. Queries and items are repre-

sentsed by feature vectors {xi }
N
i=1 and {yj }

M
j=1 respectively. Here

xi ∈ X,yj ∈ Y are both mixtures of a wide variety of features

(e.g., sparse IDs and dense features) and could be in a very high

dimensional space. The goal is to retrieve a subset of items given

a query. In personalization scenario, we assume user and context

are fully captured in xi . Note that we begin with a finite number of

queries and items to explain the intuition. Our modeling framework

works without such an assumption.

We aim to build a model with two parameterized embedding

functions u : X × Rd → Rk , v : Y × Rd → Rk that map model

parameter θ ∈ Rd and features of query and candidates to a k-
dimensional embedding space. We focus on the case where u, v are

represented by two deep neural networks as illustrated Figure 1.

The output of the model is the inner product of two embeddings,

namely,

s(x ,y) = ⟨u(x ,θ), v(y,θ)⟩.

The goal is to learn model parameter θ from a training dataset of T
examples, denoted by

T := {(xi ,yi , ri)}
T
i=1,

where (xi ,yi) denotes the pair of query xi and item yi , and ri ∈ R
is the associated reward for each pair.

Intuitively, the retrieval problem can be treated as a multi-class

classification problem with continuous rewards. In classification

tasks where each label is equally important, ri = 1 for all positive

pairs. In recommenders, ri can be extended to capture various

degrees of user engagement with a certain candidate. For example,

in news recommendations, ri can be the time a user spent on a

certain article. Given a query x , a common choice for the probability

distribution of picking candidate y fromM items {yj }
M
j=1 is based

on the softmax function, i.e.,

P(y |x ;θ) =
es(x,y)∑

j ∈[M] e
s(x,yj)

. (1)

By further incorporating rewards ri , we consider the following

weighted log-likelihood as the loss function

LT (θ) := −
1

T

∑
i ∈[T]

ri · log(P(yi |xi ;θ)). (2)

WhenM is very large, it is not feasible to include all candidate

examples in computing the partition function, i.e., the denominator

in Equation (1). A common idea is to use a subset of items in con-

structing the partition function.We focus on dealing with streaming

data. As a result, unlike training MLP models where negatives are

sampled from a fixed corpus, we consider only using in-batch items

[22] as negatives for all queries from the same batch. Precisely,

given a mini-batch of B pairs {(xi ,yi , ri)}
B
i=1, for each i ∈ [B], the

batch softmax is

PB (yi |xi ;θ) =
es(xi ,yi)∑

j ∈[B] e
s(xi ,yj)

. (3)

In-batch items are normally sampled from a power-law distribution

in our target applications. As a result, Equation (3) introduces a

large bias towards full softmax: popular items are overly penalized

as negatives due to the high probability of being included in a batch.

Inspired by the logQ correction used in sampled softmax model [5],

we correct each logit s(xi ,yj) by the following equation

sc (xi ,yj) = s(xi ,yj) − log(pj).

Here pj denotes the sampling probability of item j in a random

batch. We defer the estimation of pj to the next section.

With the correction, we have

PcB (yi |xi ;θ) =
es

c (xi ,yi)

es
c (xi ,yi) +

∑
j ∈[B], j,i e

sc (xi ,yj)
.

Then plugging the above term into Equation (2) leads to

LB (θ) := −
1

B

∑
i ∈[B]

ri · log(P
c
B (yi |xi ;θ)), (4)

which is the batch loss function. Running SGD with learning rate γ
yields the model parameter update as

θ ← θ − γ · ∇LB (θ). (5)

RecSys ’19, September 16–20, 2019, Copenhagen, Denmark Yi, et al.

Algorithm 1 Training Algorithm

1: Input: Two parameterized embedding functions u(·,θ),v(·,θ)
where each one maps input features to an embedding space

through a neural network. Learning rate γ (fixed or adaptive).

2: repeat
3: Sample or receive a batch of training data {(xi ,yi , ri)}

B
i=1

from a stream.

4: Obtain the estimated sampling probability pi of each yi from
Algorithm 2.

5: Construct loss LB (θ) according to (4).

6: θ ← θ − γ · ∇LB (θ).
7: until stopping criterion

Algorithm 2 Streaming Frequency Estimation

1: Input: Learning rate α . Arrays A and B with size H . Hash

function h with output space [H].
2: (Training)
3: For steps t = 1, 2,

4: Sample a batch of items B. For each y ∈ B, do

B[h(y)] ← (1 − α) · B[h(y)] + α · (t −A[h(y)]).

A[h(y)] ← t .

5: Until stopping criterion
6: (Inference)
7: For any item y, sampling probability p̂ = 1/B[h(y)].

Note that LB does not require a fixed set of queries or candidates.

Accordingly, Equation (5) can be applied to streaming training data

whose distribution changes over time. See Algorithm 1 for a full

description of our proposed approach.

e.g., [2, 10, 25], for approximate maximum inner product search

(MIPS) problems. Specifically, compact representations of high di-

mensional embeddings are built through quantization [20] and

end-to-end learning of coarse and product quantizers [36].

Normalization and Temperature. Empirically, we find that adding

embedding normalization, i.e., u(x ,θ) ← u(x ,θ)/∥u(x ,θ)∥2,
v(y,θ) ← v(y,θ)/∥v(y,θ)∥2, improves model trainability and thus

leads to better retrieval quality. In addition, a temperature τ is added
to each logit to sharpen the predictions, namely,

s(x ,y) = ⟨u(x ,θ),v(y,θ)⟩/τ .

In practice τ is a hyper-parameter tuned to maximize retrieval

metrics such as recall or precision.

4 STREAMING FREQUENCY ESTIMATION
In this section, we elaborate the streaming frequency estimation

used in Algorithm 1.

Consider a stream of random batches, where each batch contains

a set of items. The problem is to estimate the probability of hitting

each item y in a batch. A critical design criterion is to have a fully

distributed estimation to support distributed training when there

are multiple training jobs (i.e., workers).

In either single-machine or distributed training, a unique global

step, which represents the number of data batches consumed by

the trainer, is associated with each sampled batch. In a distributed

setting, the global step is typically synchronized among multiple

workers through parameter servers. We can leverage the global

step and convert the estimation of frequency p of an item to the

estimation of δ , which denotes the average number of steps between

two consecutive hits of the item. For example, if one item gets

sampled every 50 steps, then we have p = 0.02. The use of global

step offer us two advantages: 1) Multiple workers are implicitly

synchronized in frequency estimation via reading and modifying

the global step; 2) Estimating δ can be achieved by a simple moving

average update, which is adaptive to distribution change.

As using fixed item vocabulary is not practical, we apply hash

arrays to record the sampling information of streaming IDs. Note

that introducing hashing could cause potential hash collision. We

will revisit this issue and propose an improved algorithm at the end

of this section. As shown in Algorithm 2, we keep two arrays A
and B with size H . Suppose h is a hash function that maps any item

to an integer in [H], the mapping can be based on the ID or any

other thumbnail feature values. Then for a given item y, A[h(y)]
records the latest step when y is sampled, and B[h(y)] contains the
estimated δ of y. We use array A to help updating array B. Once
item y occurs in step t , we update array B by

B[h(y)] ← (1 − α) · B[h(y)] + α · (t −A[h(y)]). (6)

After B is updated, we assign t to A[h(y)].
For each item, suppose the number of steps between two consec-

utive hits follows a distribution represented by random variable ∆
with mean δ = E(∆). Here our goal is to estimate δ from a stream of

samples. Whenever an item occurs in a batch at step t , t −A[v(y)]
is a new sample of ∆. Accordingly, the above update can be under-

stood as running SGD with fixed learning rate α to learn the mean

of this random variable. Formally, in the case of no collision, the

next result shows the bias and variance of this online estimation.

Proposition 4.1. Suppose {∆1,∆2, ...,∆t } is a sequence of i.i.d.
samples of random variable ∆. Let δ = E [∆]. Consider an online
estimation where for i ∈ [t] and α ∈ (0, 1),

δi = (1 − α) · δi−1 + α · ∆i .

The estimation bias is given by

E(δt) − δ = (1 − α)
tδ0 − (1 − α)

t−1δ . (7)

For the variance, we have

E
[
(δt − E [δt])

2
]
≤ (1 − α)2t (δ0 − δ)

2 + α · E
[
(∆1 − α)

2
]
. (8)

Proof. By taking expectation, we have

E [δi] = (1 − α) · E(δi−1) + α · δ .

By induction on t , we have (7). For the variance, we have

E
[
(δt − E [δt])

2
]

= E
[
(δt − δ)

2
]
+ 2 · E [(δt − δ)(δ − E [δt])] + (E [δt] − δ)

2

= E
[
(δt − δ)

2
]
− (E [δt] − δ)

2 ≤ E
[
(δt − δ)

2
]
.

For the last term, we have

E
[
(δi − δ)

2
]
= (1 − α)2E

[
(δi−1 − δ)

2
]
+ α2E(∆t − δ)

2

+ 2(1 − α)αE [(δi−1 − δ)(∆i − δ)] .

Sampling-Bias-Corrected Neural Modeling for Large Corpus Item Recommendations RecSys ’19, September 16–20, 2019, Copenhagen, Denmark

Algorithm3 Improved Frequency EstimationwithMultiple Arrays

1: Input: Learning rate α . A set ofm arrays {A}mi=1 and {B}
m
i=1

with size H . A set of independent hash functions {h}mi=1 with
output space [H].

2: (Training)
3: For steps t = 1, 2,

4: Sample a batch of items B. For each y ∈ B, and i ∈ [m],

Bi [h(y)] ← (1 − α) · Bi [h(y)] + α · (t −Ai [h(y)]).

Ai [h(y)] ← t .

5: Until stopping criterion
6: (Inference)
7: For any item y, estimated probability p̂ = 1/maxi {Bi [h(y)]}.

As δi−1 and ∆i are independent, the last term is zero. Then by

induction on i , we have

E
[
(δt − δ)

2
]
= (1 − α)2t (δ0 − δ)

2 + α2
1 − (1 − α)2t−2

1 − (1 − α)2
E
[
(∆1 − δ)

2
]

≤ (1 − α)2t (δ0 − δ)
2 + αE

[
(∆1 − δ)

2
]
.

□

Equation (7) indicates that the bias |E [δt] − δ | → 0 as t → ∞.
Moreover, an ideal initialization δ0 = δ/(1 − α) can lead to an

unbiased estimation in every step. Equation (8) gives an upper

bound on the estimation variance. The learning rate α affects the

variance in two folds: 1) higher rate causes a faster decrease of the

first term that depends on initialization error; 2) lower rate reduces

the second term which depends on the variance of ∆ and does not

decrease over time.

To get the estimated sampling probability p̂ of y, we can simply

perform p̂ = 1/B[h(y)].
Distributed Updates. We consider the distributed training frame-

work presented in [13], where model parameters are distributed

over a set of servers called parameter servers, and multiple workers

process training data independently and communicate with param-

eter servers to fetch and update model parameters. Algorithm 2 can

be extended to this setting. Arrays A, B and the global step parame-

ter are distributed over parameter servers. Each worker executes

line 4 via sampling a mini-batch of items. In detail, at step t ,A[h(y)],
B[h(y)] are fetched from parameter servers. Then A[h(y)],B[h(y)]
are updated as shown and sent back. Therefore, the updates in Al-

gorithm 2 can be executed along with the asynchronous stochastic

gradient descent training of neural networks.

Multiple Hashings. Inspired by a similar idea in count-min sketch

[11], we extend Algorithm 2 to leverage multiple hash functions to

mitigate over-estimation of item frequency due to collisions. The

improved estimation is presented in Algorithm 3. Updating each

array Ai , Bi follows the corresponding steps in Algorithm 2. Each

bucket in B could be an under-prediction of the true step gap as it

could represent the union of multiple items because of collisions. As

a result, for inference, we take the maximum of ourm estimations

representing the number of steps between two consecutive hits.

5 NEURAL RETRIEVAL SYSTEM FOR
YOUTUBE

We apply the proposed modeling framework and scale it to build

a large scale neural retrieval system for one particular product in

YouTube. This product generates video recommendations condi-

tioned on a video (called seed video) being watched by a user. The

recommendation system consists of two stages: nomination (a.k.a.,

retrieval) and ranking. At nomination stage, we have multiple nom-

inators that each generates hundreds of video recommendations

given constraints of a user and a seed video. These videos are sub-

sequently scored and re-ranked by a fully-blown neural network

ranking model. In this section, we focus on building an additional

nominator in the retrieval stage, especially on the perspectives of

data, model architecture, training, and serving.

5.1 Modeling Overview
The YouTube neural retrieval model we built consists of query and

candidate networks. Figure 2 illustrates the general model architec-

ture. At any point of time, the video which a user is watching, i.e.,

the seed video, provides a strong signal about the user’s current in-

terest. As a result, we make use of a large set of seed video features

along with the user’s watch history. The candidate tower is built to

learn from candidate video features.

Training Label. Video clicks are used as positive labels. In ad-

dition, for each click, we construct a reward ri to reflect different
degrees of user engagement with the video. For example, ri = 0 for

clicked videos with little watch time. On the other hand, ri = 1 indi-

cates the whole video got watched. The reward is used as example

weight as shown in Equation (4).

Video Features.The video features we use include both categorical
and dense features. Examples of categorical features include Video
Id, and Channel Id. For each of these entities, an embedding layer is

created to map each categorical feature to a dense vector. Normally

we are dealing with two kinds of categorical features. Some features

(e.g., Video id) have strictly one categorical value per video, so we

have one embedding vector representing that. Alternatively, one

feature (e.g., Video topics) might be a sparse vector of categorical

values, and the final embedding representing that feature would

be a weighted sum of the embeddings for each of the values in the

sparse vector. To handle out-of-vocabulary entities, we randomly

assign them to a fixed set of hash buckets, and learn an embedding

for each one. Hash buckets are important for model to capture new

entities available in YouTube, particularly when sequential training

described in Section 5.2 is used.

User Features.We use a user’s watch history to capture the user’s

interest besides the seed video. One example is a sequence of k

video ids the user recently watched. We treat the watch history as

a bag of words (BOW), and represent it by the average of video

id embeddings. In the query tower, user and seed video features

are fused in the input layer, which is then passed through a feed

forward neural network.

For the same type of IDs, embeddings are shared among the

related features. For example, the same set of video id embeddings is

used for seed, candidate and users’ past watches. We did experiment

with non-shared embeddings, but did not observe significant model

quality improvement.

RecSys ’19, September 16–20, 2019, Copenhagen, Denmark Yi, et al.

ReLU

ReLU

video id past watches

In-batch softmax

L2 normalization
used for
indexing

channel id ... views likes ... video id channel id ... views likes

...
video id
embeddings

channel id
embeddings

seed features user features candidate features

ReLU

ReLU

L2 normalization

...

Figure 2: Illustration of the Neural Retrieval Model for YouTube.

5.2 Sequential Training
Our model is implemented in Tensorflow [1], and trained with

distributed gradient descent over many workers and parameter

servers. In YouTube, new training data is generated every day, and

training datasets are accordingly organized by days. The model

training makes use of this sequential structure in the following way.

Trainer consumes the data sequentially from the oldest training

examples to the most recent training examples. Once the trainer

has caught up to the latest day of training data, it waits for the next

day’s training data to arrive. In this way, the model is able to keep

up with latest data distribution shift. Training data is essentially

consumed by trainer in a streaming manner. We apply Algorithm

2 (or Algorithm 3 if multiple hashings are used) to estimate item

frequency. The online update of Equation (6) enables the model to

adapt to new frequency distribution.

5.3 Indexing and Model Serving
The index pipeline in the retrieval system periodically creates a

Tensorflow SavedModel for online serving. The index pipeline was

built in three stages: candidate example generation, embedding

inference, and embedding indexing, as shown in Figure 3. In the

first stage, a set of videos are selected from YouTube corpus based

on certain criterion. Their features are fetched and added to the

candidate examples. In the second stage, right tower of Figure 2 is

applied to compute embeddings from candidate examples. In the

third stage, we train a Tensorflow-based embedding index model

based on tree and quantizied hashing techniques. We gloss over the

details as they are not the focus of this paper. Finally, the Saved-

Model used in serving is created by stitching the query tower of

Figure 2 and the indexing model together.

Trainer (sequential training)

Candidate
Example

Generation

Embedding
Inference

Index
Training

SavedModel

Figure 3: Overview of the index pipeline for YouTube neural
retrieval system.

6 EXPERIMENTS
In this section, we show experimental results to demonstrate the

effectiveness of the proposed item frequency estimation and mod-

eling framework.

6.1 Simulation on Frequency Estimation
To evaluate effectiveness of Algorithms 2 & 3, we begin with a

simulation study where we first apply each proposed algorithm

to fit a fixed item distribution, and then change the distribution

after a certain step. To be more precise, in our setting, we use a

fixed set of M items and each item is sampled independently ac-

cording to probabilities qi ∝ i2 for i ∈ [M] where
∑
i qi = 1. We

conduct the simulation on an input stream where a batch of items

Sampling-Bias-Corrected Neural Modeling for Large Corpus Item Recommendations RecSys ’19, September 16–20, 2019, Copenhagen, Denmark

B are sampled in each step. Here each item in B is sampled with-

out replacement from qi . Therefore, the item sampling probability

we aim to fit is pi = |B| × qi . We keep the sampling distribution

static for the first t steps. We then switch it to qi ∝ (M − 1 − i)
2

for the remaining steps. To evaluate the estimation accuracy, we

use a rescaled L1 distance between the estimated probability set

{p̂i }i ∈[M] and {pi }i ∈[M], precisely
1

2 |B |

∑
i |p̂i − pi |, as the estima-

tion error. It can be also understood as the total variance between

the estimates {q̂i }i ∈[M] and {qi }i ∈[M].
Specifically, we report: 1) effect of learning rate α , and 2) effect

of multiple hashings.

Effect of Learning Rate α . We set M = 1000,B = 128, and use

array sizeH = 5000 for bothA and B. In addition, we initialize array
A with all zeros and every entry of B with value 100. Distribution

is switched at step t = 10000. We use one hash function and run

Algorithm 2. Figure 4 shows the estimation errors over the number

of global steps for a set of learning rates α . We observe that all

three curves converge to a level of error which comes from hashing

collisions and estimation variance. With a higher learning rate, the

algorithm is more adaptive to distribution change, but the final

variance is higher as shown in Proposition 4.1.

Figure 4: Frequency estimation errors for various learning
rates α . Item distribution is switched at step 10000.

Effect of Multiple Hashings. For the second simulation, we run

Algorithm 3 and experiment with various number of hash functions

m. Figure 5 shows the curves of estimation error form = 1, 2, 4. We

choose different array sizes H for A,B so that the total number of

hash buckets remain the same across these three settings. Figure 5

demonstrates the effectiveness of using multiple hash functions to

reduce estimation error, even under same number of parameters.

6.2 Wikipedia Page Retrieval
In this section, we conduct page-retrieval experiments on theWikipedia

dataset [16] to show the efficacy of the sampling-bias-corrected

batch loss 4.

Dataset. We consider the task of predicting intra-site links be-

tween Wikipedia pages. For a given pair of source and destination

pages (x ,y), label is 1 if there is a link from x to y, and 0 otherwise.

Each page is represented by a set of content features including page

URL, a bag-of-words representation of the set of n-grams in the

title, and a bag-of-words representation of the page categories. We

Figure 5: Frequency estimation errors for various number of
hash functionsm.

experiment with the English graph, which consists of 5.3M pages,

430M links, 510K title n-grams, and 403.4K unique categories.

Model.We treat the link prediction as a retrieval problem, where

given a source page, the task is to retrieve the destination pages from

the page corpus. As a result, we train a two-tower neural network

where the left and right towers map the features of source and

destination features respectively. The input feature embeddings are

shared among the two towers. Each tower has two fully connected

ReLU layers with dimensions [512, 128].

Baselines. We compare the proposed sampling-bias-corrected

batch softmax (correct-sfx) with batch softmax without any cor-

rection (plain-sfx) as shown in Equation (3), to demonstrate the

efficacy of bias correction. In addition, we consider the the mean

squared loss which is widely adopted in modeling implicit feed-

back in recommendations. The loss is a combination of MSE on

observed pairs and a regularization term pushing all unseen pairs

to a constant prior commonly chosen as 0. Under the framework

introduced in Section 3, the loss is

1

|Ω |

∑
(xi ,yi ∈Ω

(⟨u(xi), v(yi)⟩−ri)
2+λ·

1

|Ωc |

∑
(xi ,yi)∈Ωc

⟨u(xi), v(yi)⟩
2,

where Ω and Ωc
denote the set of observed pairs and its comple-

ment, and λ is a positive hyperparameter. In matrix factorization,

such a loss is typically trained using alternating least squares [23] or

coordinate descent methods [3] by writing the regularization term

as a matrix-inner-product of two Gramians, which can be computed

efficiently for linear embeddings. Very recently, Krichene et al. [26]

extends the Gramian computation to non-linear scenarios by SGD

estimation. We refer to this method as mse-gramian.
Training and Evaluation. For all methods, we use batch size 1024

and the model is trained with Adagrad [15] and learning rate 0.01

for 10M steps. For frequency estimation, we usem = 1, H = 40M
and α = 0.01. We holdout 10% links for evaluation. We evaluate

the model performance by Recall@K , which is essentially the aver-

age probability of including true label in top k candidates against

the full page corpus. Parameter λ in mse-gramian is tuned via line

search and we report the best results here. We find that normal-

izing the output layers always improves model performance and

training stability. We only show the results with normalization. We

RecSys ’19, September 16–20, 2019, Copenhagen, Denmark Yi, et al.

experiment with multiple temperature values τ for plain-sfx and

correct-sfx.
Results are summarized in Table 1. For each temperature value,

correct-sfx outperforms the corresponding plain-sfx by a large mar-

gin. It is interesting to see the effect of temperature on performance,

suggesting the necessity to carefully tune this parameter when

normalization is applied. We also note that batch softmax based

methods lead to better performance than mse-gramian.

Method Recall@10 Recall@50 Recall@100 Recall@300

mse-gramian [26] 0.0432 0.1326 0.2027 0.3530

plain-sfx τ = 0.05 0.0579 0.2259 0.3573 0.5931

plain-sfx τ = 0.07 0.0643 0.2423 0.3746 0.5991

plain-sfx τ = 0.14 0.0614 0.2216 0.3341 0.5200

correct-sfx τ = 0.05 0.0987 0.3202 0.4835 0.7413
correct-sfx τ = 0.07 0.1065 0.3079 0.4664 0.7234

correct-sfx τ = 0.14 0.0807 0.2411 0.3519 0.5529

Table 1: Recall@K for retrieving destination pages from the
5.3M page corpus in Wikipedia.

6.3 YouTube Experiments
We carry out offline and live experiments on YouTube based on

the neural retrieval system introduced in Section 5. The YouTube

training data we use includes billions of clicked videos on a daily

basis, across many days.

Setup. Recall that the model structure we use is shown in Figure 2.

As aforementioned, input feature embeddings are shared between

query and candidate towers if they are available to both. We use

three-layer DNNs with hidden layer sizes [1024, 512, 128] for both

towers. We train the model using Adagrad, learning rate 0.2, and

batch size 8192. For frequency estimation, we set H = 50M,m =
1,α = 0.01. Recall that we apply sequential training as introduced in

Section 5.2. For experiments in this section, index of approximately

10M videos chosen from the YouTube corpus is built periodically

every few hours. The index corpus is subject to change over time

due to, for example, uploads of fresh videos. But it typically covers

more than 90% of training examples.

Offline Experiments. We assign ri = 1 for all clicked videos,

and evaluate the model performance by the recall when retrieving

clicked videos. We simplify the reward function for offline exper-

iments because it is not obvious to define an appropriate offline

metric for a continuous reward. To incorporate the sequential train-

ing, we evaluate the model performance after day d0 when the

trainer completes the catch-up phase, which is set to 15 days, and

starts to wait for new data. For each new day after d0, we holdout
10% data for evaluation. To account for a weekly pattern, we re-

port averaged offline results over 7 days, i.e., from d0 + 1 to d0 + 7.
The results are presented in Table 2. Again, we see significant im-

provements from using batch softmax compared to mse-gramian.
Also, among the settings with different τ , item-frequency-corrected

softmax performs significantly better than the plain softmax.

Live Experiments. We also conduct live experiments in an A/B

testing framework in YouTube. For users in the control group,

videos are suggested from the production system. For the treatment

group, users are presented with recommendations after adding can-

didates from the neural retrieval system shown in Figure 2 to the

Method Recall@5 Recall@10 Recall@30 Recall@50

mse-gramian [26] 0.0554 0.0768 0.1149 0.1338

plain-sfx τ = 0.1 0.1916 0.2512 0.3658 0.4246

plain-sfx τ = 0.025 0.1958 0.2609 0.3839 0.4456

plain-sfx τ = 0.05 0.2069 0.2728 0.3964 0.4586

correct-sfx τ = 0.1 0.1957 0.2689 0.4125 0.4796

correct-sfx τ = 0.025 0.2014 0.2790 0.4314 0.5082

correct-sfx τ = 0.05 0.2150 0.2960 0.4537 0.5322

Table 2: Recall@K for retrieving clicked videos pages from
a 10M video corpus in YouTube. Reward ri is set to be 1 for
all clicked videos in training.

nomination stage. As recommending videos which users like to

click is not ideal, for live experiments we train the model with the

reward in a way to reflect the users’ real engagement with clicked

videos. We report the engagement metric aligned with this label.

Results are shown in Table 3. As can be seen, adding the neural

retrieval system improves the previous production system by a

significant margin. Moreover, the model with correct-sfx performs

better than the baseline of using plain-sfx by a significant margin,

demonstrating the effectiveness of sampling bias correction.

Method Engagement Metric Improvement

plain-sfx τ = 0.05 +0.20%

correct-sfx τ = 0.05 +0.37%

Table 3: YouTube live experiment results. Reward ri of
clicked video is set to be some user feedback related to the
engagement metric reported.

7 CONCLUSION
In this paper, we presented a generic modeling framework for build-

ing large scale content-aware retrieval models for industrial-scale

applications. We proposed a novel algorithm for estimating item

frequency. Theoretical analyses and simulation demonstrated its

correctness and effectiveness. We applied the proposed modeling

framework to build a neural retrieval system for YouTube recom-

mendations. In particular, to capture the data dynamics of YouTube,

we presented a sequential training strategy to which the streaming

frequency estimation algorithm could be easily integrated. Offline

experiments on both Wikipedia link prediction and YouTube video

retrieval showed significant improvements using sampling bias cor-

rection. Live experiments in YouTube also showed improvements

in user engagement with candidates retrieved from our neural re-

trieval system.

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-

jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,

Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,

Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike

Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul

Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,

Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.

2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.

https://www.tensorflow.org/ Software available from tensorflow.org.

https://www.tensorflow.org/

Sampling-Bias-Corrected Neural Modeling for Large Corpus Item Recommendations RecSys ’19, September 16–20, 2019, Copenhagen, Denmark

[2] Alexandr Andoni and Piotr Indyk. 2008. Near-optimal Hashing Algorithms for

Approximate Nearest Neighbor in High Dimensions. Commun. ACM 51, 1 (Jan.

2008), 117–122. https://doi.org/10.1145/1327452.1327494

[3] Immanuel Bayer, Xiangnan He, Bhargav Kanagal, and Steffen Rendle. 2017. A

Generic Coordinate Descent Framework for Learning from Implicit Feedback. In

Proceedings of the 26th International Conference on World Wide Web (WWW ’17).
1341–1350.

[4] Yoshua Bengio and Jean-Sébastien Sénécal. 2003. Quick Training of Probabilistic

Neural Nets by Importance Sampling. In Proceedings of the conference on Artificial
Intelligence and Statistics (AISTATS).

[5] Y. Bengio and J. S. Senecal. 2008. Adaptive Importance Sampling to Accelerate

Training of a Neural Probabilistic Language Model. Trans. Neur. Netw. 19, 4 (April
2008), 713–722. https://doi.org/10.1109/TNN.2007.912312

[6] Alex Beutel, Paul Covington, Sagar Jain, Can Xu, Jia Li, Vince Gatto, and Ed H.

Chi. 2018. Latent Cross: Making Use of Context in Recurrent Recommender

Systems. In Proceedings of the Eleventh ACM International Conference on Web
Search and Data Mining (WSDM ’18). ACM, New York, NY, USA, 46–54. https:

//doi.org/10.1145/3159652.3159727

[7] Guy Blanc and Steffen Rendle. 2018. Adaptive Sampled Softmax with Kernel

Based Sampling. In Proceedings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018.
589–598. http://proceedings.mlr.press/v80/blanc18a.html

[8] Tianqi Chen, Weinan Zhang, Qiuxia Lu, Kailong Chen, Zhao Zheng, and Yong

Yu. 2012. SVDFeature: A Toolkit for Feature-based Collaborative Filtering. J.
Mach. Learn. Res. 13, 1 (Dec. 2012), 3619–3622. http://dl.acm.org/citation.cfm?

id=2503308.2503357

[9] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,

Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan

Anil, Zakaria Haque, Lichan Hong, Vihan Jain, Xiaobing Liu, and Hemal Shah.

2016. Wide Deep Learning for Recommender Systems. arXiv:1606.07792 (2016).
http://arxiv.org/abs/1606.07792

[10] Edith Cohen and David D. Lewis. 1997. Approximating Matrix Multiplication

for Pattern Recognition Tasks. In Proceedings of the Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA ’97). Society for Industrial and Applied

Mathematics, Philadelphia, PA, USA, 682–691. http://dl.acm.org/citation.cfm?

id=314161.314415

[11] Graham Cormode and S. Muthukrishnan. 2005. An Improved Data Stream

Summary: The Count-min Sketch and Its Applications. J. Algorithms 55, 1 (April
2005), 58–75. https://doi.org/10.1016/j.jalgor.2003.12.001

[12] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks

for YouTube Recommendations. In Proceedings of the 10th ACM Conference on
Recommender Systems. New York, NY, USA.

[13] Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V.

Le, Mark Z. Mao, Marc’Aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang,

and Andrew Y. Ng. 2012. Large Scale Distributed Deep Networks. In NIPS.
[14] Tim Donkers, Benedikt Loepp, and Jürgen Ziegler. 2017. Sequential User-based

Recurrent Neural Network Recommendations. In Proceedings of the Eleventh
ACM Conference on Recommender Systems (RecSys ’17). ACM, New York, NY, USA,

152–160. https://doi.org/10.1145/3109859.3109877

[15] John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive Subgradient Methods

for Online Learning and Stochastic Optimization. J. Mach. Learn. Res. 12 (July
2011), 2121–2159. http://dl.acm.org/citation.cfm?id=1953048.2021068

[16] Wikimedia Foundation. [n.d.]. Wikimedia Downloads. https://dumps.wikimedia.

org/

[17] Daniel Gillick, Alessandro Presta, and Gaurav Singh Tomar. 2018. End-to-End

Retrieval in Continuous Space. CoRR abs/1811.08008 (2018). arXiv:1811.08008

http://arxiv.org/abs/1811.08008

[18] Carlos A. Gomez-Uribe and Neil Hunt. 2015. The Netflix Recommender System:

Algorithms, Business Value, and Innovation. ACM Trans. Manage. Inf. Syst. 6, 4,
Article 13 (Dec. 2015), 19 pages. https://doi.org/10.1145/2843948

[19] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT

Press. http://www.deeplearningbook.org.

[20] Ruiqi Guo, Sanjiv Kumar, Krzysztof Choromanski, and David Simcha. 2016. Quan-

tization based Fast Inner Product Search. In Proceedings of the 19th International
Conference on Artificial Intelligence and Statistics (Proceedings of Machine Learning
Research), Arthur Gretton and Christian C. Robert (Eds.), Vol. 51. PMLR, Cadiz,

Spain, 482–490. http://proceedings.mlr.press/v51/guo16a.html

[21] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng

Chua. 2017. Neural Collaborative Filtering. In Proceedings of the 26th International
Conference on World Wide Web (WWW ’17). International World Wide Web

Conferences Steering Committee, Republic and Canton of Geneva, Switzerland,

173–182. https://doi.org/10.1145/3038912.3052569

[22] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.

2016. Session-based Recommendations with Recurrent Neural Networks. In The
International Conference on Learning Representations (ICLR 2016).

[23] Y. Hu, Y. Koren, and C. Volinsky. 2008. Collaborative Filtering for Implicit

Feedback Datasets. In 2008 Eighth IEEE International Conference on Data Mining.
263–272. https://doi.org/10.1109/ICDM.2008.22

[24] Anjuli Kannan, Karol Kurach, Sujith Ravi, Tobias Kaufman, Balint Miklos, Greg

Corrado, Andrew Tomkins, Laszlo Lukacs, Marina Ganea, Peter Young, and Vivek

Ramavajjala. 2016. Smart Reply: Automated Response Suggestion for Email. In

Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data
Mining (KDD) (2016). https://arxiv.org/pdf/1606.04870v1.pdf

[25] Noam Koenigstein, Parikshit Ram, and Yuval Shavitt. 2012. Efficient Retrieval of

Recommendations in a Matrix Factorization Framework. In Proceedings of the 21st
ACM International Conference on Information and Knowledge Management (CIKM
’12). ACM, New York, NY, USA, 535–544. https://doi.org/10.1145/2396761.2396831

[26] Walid Krichene, Nicolas Mayoraz, Steffen Rendle, Li Zhang, Xinyang Yi, Lichan

Hong, Ed Chi, and John Anderson. 2019. Efficient Training on Very Large

Corpora via Gramian Estimation. In 7th International Conference on Learning
Representations.

[27] Jiaqi Ma, Zhe Zhao, Jilin Chen, Ang Li, Lichan Hong, and Ed H. Chi. 2019. SNR:

Sub-Network Routing for Flexible Parameter Sharing in Multi-task Learning. In

AAAI 2019. http://www.jiaqima.com/papers/SNR.pdf

[28] Jiaqi Ma, Zhe Zhao, Xinyang Yi, Jilin Chen, Lichan Hong, and Ed H. Chi. 2018.

Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-

of-Experts. In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining (KDD ’18). ACM, New York, NY, USA,

1930–1939. https://doi.org/10.1145/3219819.3220007

[29] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013.

Distributed Representations of Words and Phrases and Their Compositionality. In

Proceedings of the 26th International Conference on Neural Information Processing
Systems - Volume 2 (NIPS’13). Curran Associates Inc., USA, 3111–3119. http:

//dl.acm.org/citation.cfm?id=2999792.2999959

[30] Frederic Morin and Yoshua Bengio. 2005. Hierarchical probabilistic neural net-

work language model. In AISTATS’05. 246–252.
[31] Paul Neculoiu, Maarten Versteegh, and Mihai Rotaru. 2016. Learning Text Simi-

larity with Siamese Recurrent Networks. In Rep4NLP@ACL.
[32] The Netflix Prize. 2012. The Netflix Prize. http://www.netflixprize.com/.

[33] S. Rendle. 2010. Factorization Machines. In 2010 IEEE International Conference on
Data Mining. 995–1000. https://doi.org/10.1109/ICDM.2010.127

[34] Maksims Volkovs, Guangwei Yu, and Tomi Poutanen. 2017. DropoutNet: Ad-

dressing Cold Start in Recommender Systems. In Advances in Neural Infor-
mation Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,

R. Fergus, S. Vishwanathan, and R. Garnett (Eds.). Curran Associates, Inc., 4957–

4966. http://papers.nips.cc/paper/7081-dropoutnet-addressing-cold-start-in-

recommender-systems.pdf

[35] Ruoxi Wang, Bin Fu, Gang Fu, and MingliangWang. 2017. Deep & Cross Network

for Ad Click Predictions. In Proceedings of the ADKDD’17 (ADKDD’17). ACM,

New York, NY, USA, Article 12, 7 pages. https://doi.org/10.1145/3124749.3124754

[36] Xiang Wu, Ruiqi Guo, Ananda Theertha Suresh, Sanjiv Kumar, Daniel N

Holtmann-Rice, David Simcha, and Felix X Yu. 2017. Multiscale Quantization

for Fast Similarity Search. In Advances in Neural Information Processing Systems
30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,

and R. Garnett (Eds.). Curran Associates, Inc., 5749–5757. http://papers.nips.cc/

paper/7157-multiscale-quantization-for-fast-similarity-search.pdf

[37] Yinfei Yang, Steve Yuan, Daniel Cer, Sheng-Yi Kong, Noah Constant, Petr Pilar,

Heming Ge, Yun-hsuan Sung, Brian Strope, and Ray Kurzweil. 2018. Learning

Semantic Textual Similarity from Conversations. In Proceedings of The Third
Workshop on Representation Learning for NLP. Association for Computational

Linguistics, Melbourne, Australia, 164–174. https://www.aclweb.org/anthology/

W18-3022

[38] Han Zhu, Xiang Li, Pengye Zhang, Guozheng Li, Jie He, Han Li, and Kun Gai.

2018. Learning Tree-based Deep Model for Recommender Systems. In Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining (KDD ’18). ACM, New York, NY, USA, 1079–1088. https://doi.org/

10.1145/3219819.3219826

https://doi.org/10.1145/1327452.1327494
https://doi.org/10.1109/TNN.2007.912312
https://doi.org/10.1145/3159652.3159727
https://doi.org/10.1145/3159652.3159727
http://proceedings.mlr.press/v80/blanc18a.html
http://dl.acm.org/citation.cfm?id=2503308.2503357
http://dl.acm.org/citation.cfm?id=2503308.2503357
http://arxiv.org/abs/1606.07792
http://dl.acm.org/citation.cfm?id=314161.314415
http://dl.acm.org/citation.cfm?id=314161.314415
https://doi.org/10.1016/j.jalgor.2003.12.001
https://doi.org/10.1145/3109859.3109877
http://dl.acm.org/citation.cfm?id=1953048.2021068
https://dumps.wikimedia.org/
https://dumps.wikimedia.org/
http://arxiv.org/abs/1811.08008
http://arxiv.org/abs/1811.08008
https://doi.org/10.1145/2843948
http://www.deeplearningbook.org
http://proceedings.mlr.press/v51/guo16a.html
https://doi.org/10.1145/3038912.3052569
https://doi.org/10.1109/ICDM.2008.22
https://arxiv.org/pdf/1606.04870v1.pdf
https://doi.org/10.1145/2396761.2396831
http://www.jiaqima.com/papers/SNR.pdf
https://doi.org/10.1145/3219819.3220007
http://dl.acm.org/citation.cfm?id=2999792.2999959
http://dl.acm.org/citation.cfm?id=2999792.2999959
https://doi.org/10.1109/ICDM.2010.127
http://papers.nips.cc/paper/7081-dropoutnet-addressing-cold-start-in-recommender-systems.pdf
http://papers.nips.cc/paper/7081-dropoutnet-addressing-cold-start-in-recommender-systems.pdf
https://doi.org/10.1145/3124749.3124754
http://papers.nips.cc/paper/7157-multiscale-quantization-for-fast-similarity-search.pdf
http://papers.nips.cc/paper/7157-multiscale-quantization-for-fast-similarity-search.pdf
https://www.aclweb.org/anthology/W18-3022
https://www.aclweb.org/anthology/W18-3022
https://doi.org/10.1145/3219819.3219826
https://doi.org/10.1145/3219819.3219826

	Abstract
	1 Introduction
	2 Related Work
	2.1 Content-Aware and Neural Recommenders
	2.2 Extreme Classification
	2.3 Two-tower Models

	3 Modeling Framework
	4 Streaming Frequency Estimation
	5 Neural Retrieval System for YouTube
	5.1 Modeling Overview
	5.2 Sequential Training
	5.3 Indexing and Model Serving

	6 Experiments
	6.1 Simulation on Frequency Estimation
	6.2 Wikipedia Page Retrieval
	6.3 YouTube Experiments

	7 Conclusion
	References

