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ABSTRACT
Multi-task learning (MTL) has been successfully applied to many
recommendation applications. However, MTL models often suffer
from performance degeneration with negative transfer due to the
complex and competing task correlation in real-world recommender
systems. Moreover, through extensive experiments across SOTA
MTL models, we have observed an interesting seesaw phenome-
non that performance of one task is often improved by hurting
the performance of some other tasks. To address these issues, we
propose a Progressive Layered Extraction (PLE) model with a novel
sharing structure design. PLE separates shared components and
task-specific components explicitly and adopts a progressive rout-
ing mechanism to extract and separate deeper semantic knowledge
gradually, improving efficiency of joint representation learning and
information routing across tasks in a general setup. We apply PLE
to both complicatedly correlated and normally correlated tasks,
ranging from two-task cases to multi-task cases on a real-world
Tencent video recommendation dataset with 1 billion samples, and
results show that PLE outperforms state-of-the-art MTL models
significantly under different task correlations and task-group size.
Furthermore, online evaluation of PLE on a large-scale content
recommendation platform at Tencent manifests 2.23% increase in
view-count and 1.84% increase in watch time compared to SOTA
MTL models, which is a significant improvement and demonstrates
the effectiveness of PLE. Finally, extensive offline experiments on
public benchmark datasets demonstrate that PLE can be applied to
a variety of scenarios besides recommendations to eliminate the
seesaw phenomenon. PLE now has been deployed to the online
video recommender system in Tencent successfully.
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1 INTRODUCTION
Personalized recommendation has played a crucial role in online ap-
plications. Recommender systems (RS) need to incorporate various
user feedbacks to model user interests and maximize user engage-
ment and satisfaction. However, user satisfaction is normally hard
to tackle directly by a learning algorithm due to the high dimension-
ality of the problem. Meanwhile, user satisfaction and engagement
have many major factors that can be learned directly, e.g. the likeli-
hood of clicking, finishing, sharing, favoriting, and commenting etc.
Therefore, there has been an increasing trend to apply Multi-Task
Learning (MTL) in RS to model the multiple aspects of user satis-
faction or engagement simultaneously. And in fact, it has been the
mainstream approach in major industry applications[11, 13, 14, 25].

MTL learns multiple tasks simultaneously in one single model
and is proven to improve learning efficiency through information
sharing between tasks [2]. However, tasks in real-world recom-
mender systems are often loosely correlated or even conflicted,
which may lead to performance deterioration known as negative
transfer [21]. Through extensive experiments in a real-world large-
scale video recommender system and public benchmark datasets,
we find that existing MTL models often improve some tasks at
the sacrifice of the performance of others, when task correlation is
complex and sometimes sample dependent, i.e., multiple tasks could
not be improved simultaneously compared to the corresponding
single-task model, which is called seesaw phenomenon in this paper.

Prior works put more efforts to address the negative transfer but
neglect the seesaw phenomenon, e.g., cross-stitch network [16] and
sluice network [18] propose to learn static linear combinations to
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fuse representations of different tasks, which could not capture the
sample dependence. MMOE [13] applies gating networks to com-
bine bottom experts based on the input to handle task differences
but neglects the differentiation and interaction between experts,
which is proved to suffer from the seesaw phenomenon in our in-
dustrial practice. Hence, it is critical to design a more powerful and
efficient model to handle complicated correlations and eliminate
the challenging seesaw phenomenon.

To achieve this goal, we propose a novel MTL model called
Progressive Layered Extraction (PLE), which better exploits prior
knowledge in the design of shared network to capture complicated
task correlations. Compared with roughly shared parameters in
MMOE, PLE explicitly separates shared and task-specific experts
to alleviate harmful parameter interference between common and
task-specific knowledge. Furthermore, PLE introduces multi-level
experts and gating networks, and applies progressive separation
routing to extract deeper knowledge from lower-layer experts and
separate task-specific parameters in higher levels gradually.

To evaluate the performance of PLE, we conduct extensive ex-
periments on real-world industrial recommendation dataset and
major available public datasets including census-income [5], syn-
thetic data [13] and Ali-CCP 1. Experiment results demonstrate that
PLE outperforms state-of-the-art MTL models across all datasets,
showing consistent improvements on not only task groups with
challenging complex correlations, but also task groups with normal
correlations in different scenarios. Besides, significant improvement
of online metrics on a large-scale video recommender system in
Tencent demonstrates the advantage of PLE in real-world recom-
mendation applications.

The main contributions of this paper are summarized as follows:

• Through extensive experiments in the large-scale video rec-
ommender system at Tencent and public benchmark datasets,
an interesting seesaw phenomenon has been observed that
SOTA MTL models often improve some tasks at the sacri-
fice of the performance of others and do not outperform the
corresponding single-task model due to the complicatedly
inherent correlations.

• A PLE model with novel shared learning structure is pro-
posed to improve shared learning efficiency then address
the seesaw phenomenon and negative transfer further, from
the perspective of joint representation learning and informa-
tion routing. Besides recommendation applications, PLE is
flexible to be applied to a variety of scenarios.

• Extensive offline experiments are conducted to evaluate the
effectiveness of PLE on industrial and public benchmark
datasets. Online A/B test results in one of the world’s largest
content recommendation platforms at Tencent also demon-
strate the significant improvement of PLE over SOTA MTL
models in real-world applications, with 2.23% increase in
view-count and 1.84% increase in watch time, which gener-
ates significant business revenue. PLE has been successfully
deployed to the recommender system now and can be poten-
tially applied to many other recommendation applications.

1https://tianchi.aliyun.com/dataset/dataDetail?dataId=408

2 RELATEDWORK
Efficient multi-task learning models and application of MTL models
in recommender systems are two research areas related to our work.
In this section, we briefly discuss related works in these two areas.

2.1 Multi-Task Learning Models
Hard parameter sharing [2] shown in Fig. 1a) is the most basic and
commonly used MTL structure but may suffer from negative trans-
fer due to task conflicts as parameters are straightforwardly shared
between tasks. To deal with task conflicts, cross-stitch network
[16] in Fig. 1f) and sluice network [18] in Fig. 1g) both propose to
learn weights of linear combinations to fuse representations from
different tasks selectively. However, representations are combined
with the same static weights for all samples in these models and the
seesaw phenomenon is not addressed. In this work, the proposed
PLE (Progressive Layered Extraction) model applies progressive
routing mechanism with gate structures to fuse knowledge based
on the input, which achieves adaptive combinations for different
inputs.

There have been some studies applying the gate structure and
attention network for information fusion. MOE [8] first proposes
to share some experts at the bottom and combine experts through
a gating network. MMOE [13] extends MOE to utilize different
gates for each task to obtain different fusing weights in MTL. Simi-
larly, MRAN [24] applies multi-head self-attention to learn different
representation subspaces at different feature sets. The expert and
attention module are shared among all tasks and there is no task-
specific concept in MOE, MMOE (shown in Fig. 1) and MRAN.
In contrast, our proposed CGC (Customized Gate Control) and
PLE model separate task-common and task-specific parameters
explicitly to avoid parameter conflicts resulted from complex task
correlations. Even though there exists theoretical possibility for
MMOE to converge to our network design, the prior knowledge
on network design is important and MMOE can hardly discover
the convergence path in practice. Liu et al. [10] apply task-specific
attention networks to fuse shared features selectively but different
tasks still share the same representation before fusion in attention
network. None of the previous works has explicitly addressed the
issues of joint optimization of representation learning and routing,
especially in an inseparable joint fashion, while this work makes
the first effort to propose a novel progressive separation fashion
on the general framework of joint learning and routing.

There have also been some works utilizing AutoML approaches
to find a good network structure. SNR framework [12] controls
connections between sub-networks by binary random variables
and applies NAS [26] to search for the optimal structure. Similarly,
Gumbel-matrix routing framework [15] learns routing of MTL mod-
els formulated as a binary matrix with Gumbel-Softmax trick. Mod-
eling routing process as MDP, Rosenbaum et al. [17] applies MARL
[19] to train the routing network. The network structures in these
works are designed with certain simplified assumptions and are
not general enough. The routing network in [17] selects no more
than one function block for each task in each depth, which reduces
the expressivity of the model. Gumbel-matrix routing network [15]
imposes the constraint on the representation learning as each task’s
input needs to merge to one representation at each layer. Moreover,
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Figure 1: Network Routing of MTL Models. Blue rectangles and circles represent shared layers and gating networks respec-
tively, pink and green rectangles represent task-specific layers, pink and green circles denote task-specific gating networks
for different tasks.

the fusing weights in these frameworks are not adjustable for dif-
ferent inputs, and the expensive searching cost is another challenge
for these approaches to find the optimal structure.

2.2 Multi-Task Learning in Recommender
Systems

To better exploit various user behaviors, multi-task learning has
been widely applied to recommender systems and achieved sub-
stantial improvement. Some studies integrate traditional recom-
mendation algorithms such as collaborative filtering and matrix
factorization with MTL. Lu et al. [11] and Wang et al. [23] impose
regularization on latent representations learned for the recommen-
dation task and explanation task to optimize them jointly. Wang et
al. [22] combine collaborative filtering with MTL to learn user-item
similarity more efficiently. Compared to PLE in this paper, these
factorization based models exhibit lower expressivity and could not
fully exploit commonalities between tasks.

As the most basic MTL structure, hard parameter sharing has
been applied to many DNN based recommender systems. The ESSM
[14] introduces two auxiliary tasks of CTR (Click-Through Rate)
and CTCVR and shares embedding parameters between CTR and
CVR (Conversion Rate) to improve the performance of CVR pre-
diction. Hadash et al. [7] propose a multi-task framework to learn
parameters of the ranking task and rating task simultaneously. The
task of text recommendation in [1] is improved through sharing
representations at the bottom. However, hard parameter sharing
often suffers from negative transfer and seesaw phenomenon under
loose or complex task correlations. In contrast, our proposed model
introduces a novel sharing mechanism to achieve more efficient
information sharing in general.

Besides hard parameter sharing, there have been some recom-
mender systems applying MTL models with more efficient shared
learning mechanism. To better exploit correlations between tasks,
Chen et al. [3] utilize hierarchical multi-pointer co-attention [20]
to improve the performance of the recommendation task and ex-
planation task. However, tower networks of each task share the
same representation in the model, which may still suffer from task
conflicts. Applying MMOE [13] to combine shared experts through
different gating networks for each task, the YouTube video rec-
ommender system in [25] can better capture task differences and
optimize multiple objectives efficiently. Compared with MMOE
which treats all experts equally without differentiation, PLE in this

paper explicitly separates task-common and task-specific experts
and adopts a novel progressive separation routing to achieve signif-
icant improvement over MMOE in real-world video recommender
systems.

3 SEESAW PHENOMENON IN MTL FOR
RECOMMENDATION

Negative transfer is a common phenomenon in MTL especially
for loosely correlated tasks [21]. For complex task correlation and
especially sample dependent correlation patterns, we also observe
the seesaw phenomenon where improving shared learning effi-
ciency and achieving significant improvement over the correspond-
ing single-task model across all tasks is difficult for current MTL
models. In this section, we introduce and investigate the seesaw
phenomenon thoroughly based on a large-scale video recommender
system in Tencent.

3.1 An MTL Ranking System for Video
Recommendation

In this subsection, we briefly introduce the MTL ranking system
serving Tencent News, which is one of the world’s largest content
platforms and recommends news and videos to users based on the
diverse user feedbacks. As shown in Fig. 2, there are multiple ob-
jectives to model different user behaviors such as click, share, and
comment in the MTL ranking system. In the offline training process,
we train the MTL ranking model based on user actions extracted
from user logs. After each online request, the ranking model out-
puts predictions for each task, then the weighted-multiplication
based ranking module combines these predicted scores to a final
score through a combination function shown in Equation 1, and
recommends top-ranked videos to the user finally.

score = pVTR
wVTR × pVCR

wVCR × pSHR
wSHR × · · · ×

pCMR
wCMR × f (video_len), (1)

where eachw determines the relative importance of each predicted
score, f (video_len) is a non-linear transform function such as sig-
moid or log function in video duration.wVTR ,wVCR ,wSHR ,wCMR
are hyper-paramters optimized through online experimental search
to maximize online metrics.

Out of all tasks, VCR (View Completion Ratio) and VTR (View-
Through Rate) are two important objectives modeling key online
metrics of view-count and watch time respectively. Specifically,
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Figure 2: An MTL Ranking System for Video Recommendation

VCR prediction is a regression task trained with MSE loss to pre-
dict the completion ratio of each view. VTR prediction is a binary
classification task trained with cross-entropy loss to predict the
probability of a valid view, which is defined as a play action that
exceeds a certain threshold of watch time. The correlation pattern
between VCR and VTR is complex. First, the label of VTR is a
coupled factor of play action and VCR, as only a play action with
watch time exceeding the threshold will be treated as a valid view.
Second, the distribution of play action is further complicated as
samples from auto-play scenarios in WIFI exhibit higher average
probability of play, while other samples from explicit click scenar-
ios without auto-play exhibit lower probability of play. Due to the
complex and strong sample dependent correlation pattern, a seesaw
phenomenon is observed when modeling VCR and VTR jointly.

3.2 Seesaw Phenomenon in MTL
To better understand the seesaw phenomenon, we perform experi-
mental analysis with the single-task model and SOTA MTL models
on the complicatedly correlated task-group of VCR and VTR in
our ranking system. Besides hard parameter sharing, cross-stitch
[16], sluice network [18] and MMOE [13], we also evaluate two
innovatively proposed structures called asymmetric sharing and
customized sharing:

• Asymmetric Sharing is a novel sharing mechanism to capture
asymmetric relations between tasks. According to Fig. 1b), bottom
layers are shared asymmetrically between tasks, and represen-
tation of which task to be shared depends on relations between
tasks. Common fusion operations such as concatenation, sum-
pooling, and average-pooling can be applied to combine outputs
of bottom layers of different tasks.

• Customized Sharing shown in Fig. 1c) separates shared and
task-specific parameters explicitly to avoid inherent conflicts
and negative transfer. Compared with the single-task model, cus-
tomized sharing adds a shared bottom layer to extract sharing
information and feeds the concatenation of the shared bottom
layer and task-specific layer to the tower layer of the correspond-
ing task.

Fig. 3 illustrates experiment results, where bubbles closer to
upper-right indicate better performance with higher AUC and
lower MSE. It is worth noting that 0.1% increase of AUC or MSE

contributes significant improvement to online metrics in our sys-
tem, which is also mentioned in [4, 6, 14]. One can see that hard
parameter sharing and cross-stitch network suffer from significant
negative transfer and perform worst in VTR. Through innovative
sharing mechanism to capture asymmetric relations, asymmetric
sharing achieves significant improvement in VTR but exhibits sig-
nificant degeneration in VCR, similar to sluice network. Owing to
explicit separation of shared layers and task-specific layers, cus-
tomized sharing improves VCR over the single-task model while
still slightly suffers in VTR. MMOE improves over the single-task
model on both tasks but the improvement of VCR is only +0.0001
on the borderline. Although these models exhibit different learning
efficiency with these two challenging tasks, we clearly observe
the seesaw phenomenon that the improvement of one task often
leads to performance degeneration of the other task, as no one
baseline MTL model lies in 2nd quadrant completely. Experiments
with SOTA models on public benchmark datasets also exhibit clear
seesaw phenomenon. Details would be provided in Section 5.2.

Hard Sharing

Single-TaskCross-Stitch

Customized Sharing

Asymmetric Sharing

Sluice Network

MMOE

PLE (ours)

Figure 3: Seesaw Phenomenon under Complex Task Corre-
lation

As aforementioned, the correlation pattern between VCR and
VTR is complicated and sample dependent. Specifically, there are
some partially ordered relations between VCR and VTR, and dif-
ferent samples exhibit different correlations. Thus, cross-stitch and
sluice network that combine shared representations with same
static weights for all samples could not capture the sample depen-
dence and suffer from the seesaw phenomenon. Applying gates
to obtain fusing weights based on the input, MMOE handles task
difference and sample difference to some extent, which outperforms
other baseline MTLmodels. Nevertheless, experts are shared among
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all tasks in MMOE without differentiation, which could not capture
the complicated task correlations and may bring harmful noise to
some tasks. Moreover, MMOE neglects the interactions between dif-
ferent experts, which limits the performance of joint optimization
further. In addition to VCR and VTR, there are many complicat-
edly correlated tasks in industrial recommendation applications
as human behaviors are often subtle and complex, e.g., CTR pre-
diction and CVR prediction in online advertising and e-commerce
platform [14]. Therefore, a powerful network that considers differ-
entiation and interactions between experts is critical to eliminate
the challenging seesaw phenomenon resulted from complex task
correlation.

In this paper, we propose a Progressive Layered Extraction (PLE)
model to address the seesaw phenomenon and negative transfer.
The key idea of PLE is as follows. First, it explicitly separates shared
and task-specific experts to avoid harmful parameter interference.
Second, multi-level experts and gating networks are introduced
to fuse more abstract representations. Finally, it adopts a novel
progressive separation routing to model interactions between ex-
perts and achieve more efficient knowledge transferring between
complicatedly correlated tasks. As shown in Fig. 3, PLE achieves
significant improvement over MMOE in both tasks. Details of struc-
ture design and experiments would be described in Section 4 and
Section 5 respectively.

4 PROGRESSIVE LAYERED EXTRACTION
To address the seesaw phenomenon and negative transfer, we pro-
pose a Progressive Layered Extraction (PLE) model with a novel
sharing structure design in this section. First, a Customized Gate
Control (CGC) model that explicitly separates shared and task-
specific experts is proposed. Second, CGC is extended to a general-
ized PLE model with multi-level gating networks and progressive
separation routing for more efficient information sharing and joint
learning. Finally, the loss function is optimized to better handle the
practical challenges of joint training for MTL models.
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Figure 4: Customized Gate Control (CGC) Model

4.1 Customized Gate Control
Motivated by customized sharing which achieves similar perfor-
mance with the single-task model through explicitly separating
shared and task-specific layers, we first introduce a Customized
Gate Control (CGC)model. As shown in Fig. 4, there are some expert
modules at the bottom and some task-specific tower networks at
the top. Each expert module is composed of multiple sub-networks
called experts and the number of experts in each module is a hyper-
parameter to tune. Similarly, a tower network is also a multi-layer
network with width and depth as hyper-parameters. Specifically,
the shared experts in CGC are responsible for learning shared pat-
terns, while patterns for specific tasks are extracted by task-specific
experts. Each tower network absorbs knowledge from both shared
experts and its own task-specific experts, which means that the
parameters of shared experts are affected by all tasks while parame-
ters of task-specific experts are only affected by the corresponding
specific task.

In CGC, shared experts and task-specific experts are combined
through a gating network for selective fusion. As depicted in Fig. 4,
the structure of the gating network is based on a single-layer feed-
forward network with SoftMax as the activation function, input as
the selector to calculate the weighted sum of the selected vectors,
i.e., the outputs of experts. More precisely, the output of task k’s
gating network is formulated as:

дk (x) = wk (x)Sk (x), (2)
where x is the input representation, andwk (x) is a weighting func-
tion to calculate the weight vector of task k through linear trans-
formation and a SoftMax layer:

wk (x) = Softmax(W k
д x), (3)

whereW k
д ∈ R(mk+ms )×d is a parameter matrix,ms andmk are the

number of shared experts and task k’s specific experts respectively,
d is the dimension of input representation. Sk (x) is a selected matrix
composed of all selected vectors including shared experts and task
k’s specific experts:

Sk (x) = [ET
(k,1),E

T
(k,2), . . . ,E

T
(k,mk )

,ET
(s,1),E

T
(s,2), . . . ,E

T
(s,ms )

]T

(4)
Finally, the prediction of task k is:

yk (x) = tk (дk (x)), (5)

where tk denotes the tower network of task k .
Compared with MMOE, CGC removes connections between a

task’s tower network and task-specific experts of other tasks, en-
abling different types of experts to concentrate on learning different
knowledge efficiently without interference. Combined with the ben-
efit of gating networks to fuse representations dynamically based
on the input, CGC achieves more flexible balance between tasks and
better deals with task conflicts and sample-dependent correlations.

4.2 Progressive Layered Extraction
CGC separates task-specific and shared components explicitly. How-
ever, learning needs to shape out deeper and deeper semantic repre-
sentations gradually in deep MTL, while normally it is not crystally
clear whether the intermediate representations should be treated
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as shared or task-specific. To address this issue, we generalize CGC
with Progressive Layered Extraction (PLE). As depicted in Fig. 5,
there are multi-level extraction networks in PLE to extract higher-
level shared information. Besides gates for task-specific experts,
the extraction network also employs a gating network for shared
experts to combine knowledge from all experts in this layer. Thus
parameters of different tasks in PLE are not fully separated in the
early layer as CGC but are separated progressively in upper layers.
The gating networks in higher-level extraction network take the
fusion results of gates in lower-level extraction network as the se-
lector instead of the raw input, as it may provide better information
for selecting abstract knowledge extracted in higher-level experts.

The calculation of weighting function, selected matrix, and gat-
ing network in PLE are the same as that in CGC. Specifically, the
formulation of the gating network of task k in the jth extraction
network of PLE is:

дk, j (x) = wk, j (дk, j−1(x))Sk, j (x), (6)

wherewk, j is the weighting function of task k with дk, j−1 as input,
and Sk, j is the selected matrix of task k in the jth extraction network.
It is worth noting that the selected matrix of the shared module in
PLE is slightly different from task-specific modules, as it consists
of all shared experts and task-specific experts in this layer.

After calculating all gating networks and experts, we can obtain
the prediction of task k in PLE finally:

yk (x) = tk (дk,N (x)) (7)

With multi-level experts and gating networks, PLE extracts and
combines deeper semantic representations for each task to im-
prove generalization. As shown in Fig. 1, the routing strategy is full
connection for MMOE and early separation for CGC. Differently,

PLE adopts a progressive separation routing to absorb information
from all lower-layer experts, extract higher-level shared knowl-
edge, and separate task-specific parameters gradually. The process
of progressive separation is similar to the extraction process from
a compound for desired product in chemistry. During the process
of knowledge extraction and transformation in PLE, lower-level
representations are jointly extracted/aggregated and routed at the
higher-level shared experts, obtaining the shared knowledge and
distributing to specific tower layers progressively, so as to achieve
more efficient and flexible joint representation learning and sharing.
Although the full connection routing of MMOE seems like a general
design of CGC and PLE, practical studies in Section 5.3 show that
MMOE is not able to converge to the structure of CGC or PLE, in
spite of the existence of possibility.

Figure 6: Training Space of Different tasks

4.3 Joint Loss Optimization for MTL
Having designed the efficient network structure, we now focus on
training task-specific and shared layers jointly in an end-to-end
manner. In multi-task learning, a common formulation of joint loss
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is the weighted sum of the losses for each individual task:

L(θ1, . . . ,θK ,θs ) =
K∑
k=1

ωkLk (θk ,θs ), (8)

where θs denotes shared parameters, K is the number of tasks, Lk ,
ωk and θk are loss function, loss weight, and task-specific parame-
ters of task k respectively.

However, there exist several issues, making joint optimization
of MTL models challenging in practice. In this paper, we optimize
the joint loss function to address two critical ones encountered in
real-world recommender systems. The first problem is the hetero-
geneous sample space due to sequential user actions. For instance,
users can only share or comment on an item after clicking it, which
leads to different sample space of different tasks shown in Fig. 6.
To train these tasks jointly, we consider the union of sample space
of all tasks as the whole training set, and ignore samples out of
its own sample space when calculating the loss of each individual
task:

Lk (θk ,θs ) =
1∑
i δ

i
k

∑
i
δ ik lossk (ŷ

i
k (θk ,θs ),y

i
k ) (9)

where lossk is taskk’s loss of sample i calculated based on prediction
ŷik and ground truth yik , δ

i
k ∈ {0, 1} indicates whether sample i lies

in the sample space of task k .
The second problem is that the performance of an MTL model

is sensitive to the choice of loss weight in the training process [9],
as it determines the relative importance of each task on the joint
loss. In practice, it is observed that each task may have different
importance at different training phases. Therefore, we consider the
loss weight for each task as a dynamic weight instead of a static one.
At first, we set an initial loss weight ωk,0 for task k , then update
its loss weight after each step based on the updating ratio γk :

ω
(t )
k = ωk,0 × γ tk , (10)

where t denotes the training epoch,ωk,0 andγk are hyper-parameters
of the model.

5 EXPERIMENTS
In this section, extensive offline and online experiments are per-
formed on both the large-scale recommender system in Tencent
and public benchmark datasets to evaluate the effectiveness of
proposed models. We also analyze the expert utilization in all gate-
based MTL models to better understand the working mechanism
of gating networks and verify the structure value of CGC and PLE
further.

5.1 Evaluation on the Video Recommender
System in Tencent

In this subsection, we conduct offline and online experiments for
task groups with complex and normal correlations as well as multi-
ple tasks in the video recommender system at Tencent to evaluate
the performance of proposed models.

5.1.1 Dataset. We collect an industrial dataset through sampling
user logs from the video recommender system serving Tencent
News during 8 consecutive days. There are 46.926 million users,

2.682 million videos and 0.995 billion samples in the dataset. As
mentioned before, VCR, CTR, VTR, SHR (Share Rate), and CMR
(Comment Rate) are tasks modeling user preferences in the dataset.

5.1.2 Baseline Models. In the experiment, we compare CGC and
PLE with single-task model, asymmetric sharing, customized shar-
ing, and the SOTA MTL models including cross-stitch network,
sluice network, and MMOE. As multi-level experts are shared in
PLE, we extend MMOE to ML-MMOE (multi-layer MMOE) shown
in Fig. 1h) by adding multi-level experts for fair comparison. In
ML-MMOE, higher-level experts combine representations from
lower-level experts through gating networks and all gating net-
works share the same selector.

5.1.3 Experiment Setup. In the experiment, VCR prediction is a
regression task trained and evaluated withMSE loss, tasks modeling
other actions are all binary classification tasks trained with cross-
entropy loss and evaluated with AUC. Samples in the first 7 days
are used for training and the rest samples are test set. We adopt a
three-layer MLP network with RELU activation and hidden layer
size of [256, 128, 64] for each task in both MTL models and the
single-task model. For MTL models, we implement the expert as a
single-layer network and tune the following model-specific hyper-
parameters: number of shared layers, cross-stitch units in hard
parameter sharing and cross-stitch network, number of experts
in all gate-based models. For fair comparison, we implement all
multi-level MTL models as two-level models to keep the same depth
of networks.

Table 1: Performance on VTR/VCR Task Group

Models AUC MSE MTL Gain
VTR VCR VTR VCR

Single-Task 0.6787 0.1321 - -
Hard Parameter Sharing 0.6740 0.1320 -0.0047 +1.8E-5
Asymmetric Sharing 0.6823 0.1346 +0.0036 -0.0025

Cross-Stitch 0.6740 0.1320 -0.0047 +1.6E-5
Sluice Network 0.6825 0.1329 +0.0038 -0.0008

Customized Sharing 0.6780 0.1318 -0.0007 +0.0002
MMOE 0.6803 0.1319 +0.0016 +0.0001

ML-MMOE 0.6815 0.1329 +0.0028 -0.0009
CGC 0.6832 0.1320 +0.0045 +3.5E-5
PLE 0.6831 0.1307 +0.0044 +0.0013

Besides common evaluation metrics such as AUC and MSE, we
define a metric of MTL gain to quantitively evaluate the benefit
of multi-task learning over the single-task model for a certain task.
As shown in Equation 11, for a given task group and an MTL model
q, MTL gain of q on task A is defined as the task A’s performance
improvement of MTL model q over the single-task model with the
same network structures and training samples.

MTL gain =

{
MMTL −Msinдle , M is a positive metric
Msinдle −MMTL , M is a negative metric

(11)

5.1.4 Evaluation on Tasks with Complex Correlation. To better
capture the major online engagement metrics, e.g., view count
and watch time, we first conduct experiments on task-group of
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VCR/VTR. Table 1 illustrates the experiment results and we mark
best scores in bold and performance degeneration (negative MTL
gain) in gray. It is shown that CGC and PLE significantly outperform
all baseline models in VTR. Due to the complex correlation between
VTR and VCR, we can clearly observe the seesaw phenomenon with
the zigzag gray distribution that some models improve VCR but
hurt VTR while some improve VTR but hurt VCR. Specifically,
MMOE improves both tasks over single-task but the improvement
is not significant, while ML-MMOE improves VTR but hurts VCR.
Compared to MMOE and ML-MMOE, CGC improves VTR much
more and improves VCR slightly as well. Finally, PLE converges
with similar pace and achieves significant improvement over the
above models with the best VCR MSE and one of the best VTR
AUCs.

Table 2: Performance on CTR/VCR Task Group

Models AUC MSE MTL Gain
CTR VCR CTR VCR

Single-Task 0.7379 0.1179 - -
Cross-Stitch 0.7220 0.1158 -0.0158 +0.0021

Sluice Network 0.7382 0.1157 +0.0004 +0.0021
MMOE 0.7382 0.1175 +0.0003 +0.0004

ML-MMOE 0.7378 0.1169 -0.0001 +0.0010
CGC 0.7398 0.1155 +0.0020 +0.0023
PLE 0.7406 0.1150 +0.0027 +0.0029

5.1.5 Evaluation on Tasks with Normal Correlation. Despite the
good performance of CGC and PLE on tasks with really complicated
correlations, we further verify their generality on a general task-
group of CTR/VCR with normal correlation patterns. As CTR and
VCR aim to model different user actions, the correlation between
them is simpler. As shown in Table 2, the fact that all models except
cross-stitch exhibit positive MTL gain in both tasks shows that the
correlation pattern between CTR and VCR is not so complex and
does not suffer from the seesaw phenomenon. In this scenario, CGC
and PLE still significantly outperform all SOTA models on both
tasks with outstanding MTL gain, which verifies that the benefit of
CGC and PLE is general, achieving better shared learning efficiency
and consistently providing incremental performance improvement
across a wide range of task correlation situations, not only for tasks
with complex correlations that is hard to cooperate, but also for
regularly correlated tasks.

Table 3: Improvement over Single-taskModel on Online A/B
Test

Models Total View Count Total Watch Time

Hard Parameter Sharing -1.65% -1.79%
Sluice Network +0.75% +1.29%

MMOE +1.94% +1.73%
ML-MMOE +1.96% +1.10%

CGC +3.92% +2.75%
PLE +4.17% +3.57%

5.1.6 Online A/B Testing. Careful online A/B test with task-group
of VTR and VCR was conducted in the video recommender system
for 4 weeks. We implement all MTL models in our C++ based deep
learning framework, randomly distribute users into several buckets,
and deploy each model to one of the bucket. The final ranking score
is obtained through the combination function of multiple predicted
scores described in Section 3. Table 3 shows the improvement of
MTL models over the single-task model on online metrics of total
view count per user and total watch time per user, the ultimate goal
of the system. It is shown that CGC and PLE achieve significant
increase in online metrics over all baseline models. Moreover, PLE
outperforms CGC significantly on all online metrics, which shows
that small improvements of AUC or MSE in MTL yield significant
improvements in online metrics. PLE has been deployed to the
platform in Tencent since then.

Table 4: MTL gain of CGC and PLE on Multiple Tasks

Task Group Models MTL Gain
VTR VCR SHR CMR

VTR+VCR CGC +0.0131 +0.0019 -0.0001 -
+SHR PLE +0.0132 +0.0036 +0.0013 -

VTR+VCR CGC +0.0180 +0.0012 - +0.0000
+CMR PLE +0.0197 +0.0033 - +0.0001

VTR+VCR CGC +0.0097 +0.0016 +0.0008 +0.0012
+SHR+CMR PLE +0.0128 +0.0017 +0.0058 +0.0080

5.1.7 Evaluation with Multiple Tasks. Finally, we explore the scala-
bility of CGC and PLE in more challenging scenarios with multiple
tasks. In addition to VTR and VCR, We introduce SHR (Share Rate)
and CMR (Comment Rate) to model user feedback actions. It is
flexible to extend CGC and PLE to multiple-task cases, only to add
a task-specific expert module, gating network, and tower network
for each task. As shown in Table 4, CGC and PLE achieve signifi-
cant improvement over the single-task model nearly on all tasks
of all task groups. This shows that CGC and PLE still demonstrate
the benefits of promoting task cooperation, preventing negative
transfer and seesaw phenomenon for general situations with more
than two tasks. PLE outperforms CGC significantly in all cases.
Thus, PLE exhibits stronger benefit on improving shared learning
efficiency across different sizes of task-groups.

5.2 Evaluation on Public Datasets
In this subsection, we conduct experiments on public benchmark
datasets to evaluate the effectiveness of PLE in scenarios besides
recommendation further.

5.2.1 Datasets.

• Synthetic Data is generated following the data synthesizing
process based on [13] to control task correlations. As hyper-
parameters for data synthesis are not provided in [13], we ran-
domly sample αi and βi following the standard normal distri-
bution, and set c=1, m=10, d=512 for reproducibility. 1.4 million
samples with two continuous labels are generated for each cor-
relation.
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Figure 7: MTL gain on Synthetic Data

• Census-income Dataset [5] contains 299,285 samples and 40
features extracted from the 1994 census database. For fair compar-
ison with baseline models, we consider the same task-group as
[13]. In detail, task 1 aims to predict whether the income exceeds
50K, task 2 aims to predict whether this person’s marital status
is never married.

• Ali-CCP Dataset 1 is a public dataset containing 84 million
samples extracted from Taobao’s Recommender System. CTR
and CVR (Conversion Rate) are two tasks modeling actions of
click and purchase in the dataset.

5.2.2 Experiment Setup. The setup for census-income dataset is
the same as [13]. For synthetic data and Ali-CCP dataset, we adopt
a three-layer MLP network with RELU activation and hidden layer
size of [256, 128, 64] for each task in both MTL models and single-
task model. Hyper-parameters are tuned similarly to the experi-
ments in Section 5.1.

5.2.3 Experiment Results. Experiment results on synthetic data
shown in Fig. 7 demonstrate that hard parameter sharing and
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Figure 8: Expert Utilization in Gate-Based Models

MMOE sometimes suffer from seesaw phenomenon and lost bal-
ance between two tasks. On the contrary, PLE consistently performs
best for both tasks across different correlations and achieves 87.2%
increase in MTL gain over MMOE on average. As results on Ali-
CCP and census-income dataset shown in Table 5, PLE eliminates
the seesaw phenomenon and outperforms the single-task model
and MMOE consistently on both tasks.

Combined with previous experiments on the industrial dataset
and online A/B test, PLE exhibits stable general benefit on improv-
ing MTL efficiency and performance for different task correlation
patterns and different applications.

5.3 Expert Utilization Analysis
To disclose how the experts are aggregated by different gates, we
investigate expert utilization of all gate-based models in VTR/VCR
task group of the industrial dataset. For simplicity and fair com-
parison, we consider each expert as a single-layer network, keep
only one expert in each expert module of CGC and PLE, while keep
three experts in each layer of MMOE and ML-MMOE. Fig. 8 shows
the weight distribution of experts utilized by each gate in all test-
ing data, where the height of bars and vertical short lines indicate
mean and standard deviation of weights respectively. It is shown
that the VTR and VCR combine experts with significantly differ-
ent weights in CGC while much similar weights in MMOE, which
indicates that the well-designed structure of CGC helps achieve
better differentiation between different experts. Furthermore, there
is no zero-weight for all experts in MMOE and ML-MMOE, which
further shows that it is hard for MMOE and ML-MMOE to con-
verge to the structure of CGC and PLE without prior knowledge in
practice, despite the existence of theoretical possibility. Compared
with CGC, shared experts in PLE have larger influence on the input
of tower networks especially for the VTR task. The fact that PLE
performs better than CGC shows the value of shared higher-level
deeper representations. In other words, it is demanded that certain
deeper semantic representations are shared between tasks thus a
progressive separation routing provides a better joint routing and
learning scheme.
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Table 5: Experiment Results on Census-income and Ali-CCP Dataset

Models Census-income Task1 Census-income Task2 Ali-CCP CTR Ali-CCP CVR
AUC MTL Gain AUC MTL Gain AUC MTL Gain AUC MTL Gain

Single-Task 0.9445 - 0.9923 - 0.6088 - 0.6040 -
MMOE 0.9393 +0.0048 0.9928 +0.0005 0.6094 +0.0006 0.5738 -0.0302
PLE 0.9522 +0.0078 0.9945 +0.0022 0.6112 +0.0024 0.6097 +0.0057

6 CONCLUSION
In this paper, we propose a novel MTL model called Progressive
Layered Extraction (PLE), which separates task-sharing and task-
specific parameters explicitly and introduces an innovative pro-
gressive routing manner to avoid the negative transfer and seesaw
phenomenon, and achieve more efficient information sharing and
joint representation learning. Offline and online experiment re-
sults on the industrial dataset and public benchmark datasets show
significant and consistent improvements of PLE over SOTA MTL
models. Exploring the hierarchical task-group correlations will be
the focus of future work.
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