Research Track Paper

KDD 2018, August 19-23, 2018, London, United Kingdom

Modeling Task Relationships in Multi-task Learning with
Multi-gate Mixture-of-Experts

Jiaqi Ma'*, Zhe Zhao?, Xinyang Yi?, Jilin Chen?, Lichan Hong?, Ed H. Chi?
1School of Information, University of Michigan, Ann Arbor 2Google Inc.
liiagima@umich.edu 2{zhezhao, xinyang, jilinc, lichan, edchi}@google.com

ABSTRACT

Neural-based multi-task learning has been successfully used in
many real-world large-scale applications such as recommendation
systems. For example, in movie recommendations, beyond provid-
ing users movies which they tend to purchase and watch, the system
might also optimize for users liking the movies afterwards. With
multi-task learning, we aim to build a single model that learns these
multiple goals and tasks simultaneously. However, the prediction
quality of commonly used multi-task models is often sensitive to the
relationships between tasks. It is therefore important to study the
modeling tradeoffs between task-specific objectives and inter-task
relationships.

In this work, we propose a novel multi-task learning approach,
Multi-gate Mixture-of-Experts (MMOoE), which explicitly learns
to model task relationships from data. We adapt the Mixture-of-
Experts (MoE) structure to multi-task learning by sharing the expert
submodels across all tasks, while also having a gating network
trained to optimize each task. To validate our approach on data with
different levels of task relatedness, we first apply it to a synthetic
dataset where we control the task relatedness. We show that the
proposed approach performs better than baseline methods when
the tasks are less related. We also show that the MMoE structure
results in an additional trainability benefit, depending on different
levels of randomness in the training data and model initialization.
Furthermore, we demonstrate the performance improvements by
MMOoE on real tasks including a binary classification benchmark,
and a large-scale content recommendation system at Google.

CCS CONCEPTS

« Computing methodologies — Multi-task learning; Neural
networks; « Information systems — Recommender systems;

KEYWORDS

multi-task learning; mixture of experts; neural network; recommen-
dation system

* Work done while the first author was an intern at Google Inc.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

KDD 18, August 19-23, 2018, London, United Kingdom

© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.

ACM ISBN 978-1-4503-5552-0/18/08...$15.00
https://doi.org/10.1145/3219819.3220007

1930

ACM Reference Format:

Jiaqi Ma'*, Zhe Zhao?, Xinyang Yi?, Jilin Chen?, Lichan Hong?, Ed H. Chi?.
2018. Modeling Task Relationships in Multi-task Learning with Multi-gate
Mixture-of-Experts. In Proceedings of The 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (KDD ’18). ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3219819.3220007

1 INTRODUCTION

In recent years, deep neural network models have been successfully
applied in many real world large-scale applications, such as rec-
ommendation systems [11]. Such recommendation systems often
need to optimize multiple objectives at the same time. For example,
when recommending movies for users to watch, we may want the
users to not only purchase and watch the movies, but also to like
the movies afterwards so that they’ll come back for more movies.
That is, we can create models to predict both users’ purchases and
their ratings simultaneously. Indeed, many large-scale recommen-
dation systems have adopted multi-task learning using Deep Neural
Network (DNN) models [3].

Researchers have reported multi-task learning models can im-
prove model predictions on all tasks by utilizing regularization
and transfer learning [8]. However, in practice, multi-task learning
models do not always outperform the corresponding single-task
models on all tasks [23, 26]. In fact, many DNN-based multi-task
learning models are sensitive to factors such as the data distribution
differences and relationships among tasks [15, 34]. The inherent
conflicts from task differences can actually harm the predictions of
at least some of the tasks, particularly when model parameters are
extensively shared among all tasks.

Prior works [4, 6, 8] investigated task differences in multi-task
learning by assuming particular data generation processes for each
task, measuring task differences according to the assumption, and
then making suggestions based on how different the tasks are.
However, as real applications often have much more complicated
data patterns, it is often difficult to measure task differences and to
make use of the suggested approaches of these prior works.

Several recent works proposed novel modeling techniques to
handle task differences in multi-task learning without relying on an
explicit task difference measurement [15, 27, 34]. However, these
techniques often involve adding many more model parameters per
task to accommodate task differences. As large-scale recommenda-
tion systems can contain millions or billions of parameters, those
additional parameters are often under-constrained, which may hurt
model quality. The additional computational cost of these param-
eters are also often prohibitive in real production settings due to
limited serving resource.

In this paper, we propose a multi-task learning approach based
on a novel Multi-gate Mixture-of-Experts (MMoE) structure, which

https://doi.org/10.1145/3219819.3220007
https://doi.org/10.1145/3219819.3220007

Research Track Paper

Tower A

Tower B

Tower A

(a) (b)

KDD 2018, August 19-23, 2018, London, United Kingdom

Tower B

Tower A Tower B

Vector

(©)

Scalar

Figure 1: (a) Shared-Bottom model. (b) One-gate MoE model. (c) Multi-gate MoE model.

is inspired by the Mixture-of-Experts (MoE) model [21] and the
recent MoE layer [16, 31]. MMOoE explicitly models the task rela-
tionships and learns task-specific functionalities to leverage shared
representations. It allows parameters to be automatically allocated
to capture either shared task information or task-specific infor-
mation, avoiding the need of adding many new parameters per
task.

The backbone of MMOoE is built upon the most commonly used
Shared-Bottom multi-task DNN structure [8]. The Shared-Bottom
model structure is shown in Figure 1 (a), where several bottom lay-
ers following the input layer are shared across all the tasks and then
each task has an individual “tower” of network on top of the bottom
representations. Instead of having one bottom network shared by
all tasks, our model, shown in Figure 1 (c), has a group of bottom
networks, each of which is called an expert. In our paper, each
expert is a feed-forward network. We then introduce a gating net-
work for each task. The gating networks take the input features and
output softmax gates assembling the experts with different weights,
allowing different tasks to utilize experts differently. The results of
the assembled experts are then passed into the task-specific tower
networks. In this way, the gating networks for different tasks can
learn different mixture patterns of experts assembling, and thus
capture the task relationships.

To understand how MMoE learns its experts and task gating net-
works for different levels of task relatedness, we conduct a synthetic
experiment where we can measure and control task relatedness
by their Pearson correlation. Similar to [24], we use two synthetic
regression tasks and use sinusoidal functions as the data generation
mechanism to introduce non-linearity. Our approach outperforms
baseline methods under this setup, especially when task correlation
is low. In this set of experiments, we also discover that MMoE is
easier to train and converges to a better loss during multiple runs.
This relates to recent discoveries that modulation and gating mech-
anisms can improve the trainability in training non-convex deep
neural networks [10, 19].

1931

We further evaluate the performance of MMoE on a benchmark
dataset, UCI Census-income dataset, with a multi-task problem
setup. We compare with several state-of-the-art multi-task models
which model task relations with soft parameter sharing, and observe
improvement in our method.

Finally, we test MMoE on a real large-scale content recommenda-
tion system, where two classification tasks are learned at the same
time when recommending items to users. We train MMoE model
with hundreds of billions of training examples and compare it with
a shared-bottom production model. We observe significant improve-
ments in offline metrics such as AUC. In addition, our MMoE model
consistently improves online metrics in live experiments.

The contribution of this paper is threefold: First, we propose a
novel Multi-gate Mixture-of-Experts model which explicitly models
task relationships. Through modulation and gating networks, our
model automatically adjusts parameterization between modeling
shared information and modeling task-specific information. Second,
we conduct control experiments on synthetic data. We report how
task relatedness affects training dynamics in multi-task learning and
how MMOoE improves both model expressiveness and trainability.
Finally, we conduct experiments on real benchmark data and a
large-scale production recommendation system with hundreds of
millions of users and items. Our experiments verify the efficiency
and effectiveness of our proposed method in real-world settings.

2 RELATED WORK
2.1 Multi-task Learning in DNNs

Multi-task models can learn commonalities and differences across
different tasks. Doing so can result in both improved efficiency
and model quality for each task [4, 8, 30]. One of the widely used
multi-task learning models is proposed by Caruana [8, 9], which
has a shared-bottom model structure, where the bottom hidden
layers are shared across tasks. This structure substantially reduces
the risk of overfitting, but can suffer from optimization conflicts
caused by task differences, because all tasks need to use the same
set of parameters on shared-bottom layers.

Research Track Paper

To understand how task relatedness affects model quality, prior
works used synthetic data generation and manipulated different
types of task relatedness so as to evaluate the effectiveness of multi-
task models [4-6, 8].

Instead of sharing hidden layers and same model parameters
across tasks, some recent approaches add different types of con-
straints on task-specific parameters [15, 27, 34]. For example, for
two tasks, Duong et al. [15] adds L-2 constraints between the two
sets of parameters. The cross-stitch network [27] learns a unique
combination of task-specific hidden-layer embeddings for each
task. Yang et al. [34] uses a tensor factorization model to generate
hidden-layer parameters for each task. Compared to shared-bottom
models, these approaches have more task-specific parameters and
can achieve better performance when task differences lead to con-
flicts in updating shared parameters. However, the larger number
of task-specific parameters require more training data to fit and
may not be efficient in large-scale models.

2.2 Ensemble of Subnets & Mixture of Experts

In this paper, we apply some recent findings in deep learning such
as parameter modulation and ensemble method to model task rela-
tionships for multi-task learning. In DNNs, ensemble models and
ensemble of subnetworks have been proven to be able to improve
model performance [9, 20].

Eigen et al [16] and Shazeer et al [31] turn the mixture-of-experts
model into basic building blocks (MoE layer) and stack them in
a DNN. The MoE layer selects subnets (experts) based on the in-
put of the layer at both training time and serving time. Therefore,
this model is not only more powerful in modeling but also lowers
computation cost by introducing sparsity into the gating networks.
Similarly, PathNet [17], which is designed for artificial general in-
telligence to handle different tasks, is a huge neural network with
multiple layers and multiple submodules within each layer. While
training for one task, multiple pathways are randomly selected and
trained by different workers in parallel. The parameters of the best
pathway is fixed and new pathways are selected for training new
tasks. We took inspiration from these works by using an ensem-
ble of subnets (experts) to achieve transfer learning while saving
computation.

2.3 Multi-task Learning Applications

Thanks to the development of distributed machine learning sys-
tems [13], many large-scale real-world applications have adopted
DNN-based multi-task learning algorithms and observed substan-
tial quality improvements. On multi-lingual machine translation
tasks, with shared model parameters, translation tasks having lim-
ited training data can be improved by jointly learning with tasks
having large amount of training data [22]. For building recommen-
dation systems, multi-task learning is found helpful for providing
context-aware recommendations [28, 35]. In [3], a text recommen-
dation task is improved by sharing feature representations and
lower level hidden layers. In [11], a shared-bottom model is used
to learn a ranking algorithm for video recommendation. Similar to
these prior works, we evaluate our modeling approach on a real-
world large-scale recommendation system. We demonstrate that

1932

KDD 2018, August 19-23, 2018, London, United Kingdom

our approach is indeed scalable, and has favorable performance
compared with other state-of-the-art modeling approaches.

3 PRELIMINARY
3.1 Shared-bottom Multi-task Model

We first introduce the shared-bottom multi-task model in Figure
1 (a), which is a framework proposed by Rich Caruana [8] and
widely adopted in many multi-task learning applications [18, 29].
Therefore, we treat it as a representative baseline approach in multi-
task modeling.

Given K tasks, the model consists of a shared-bottom network,
represented as function f, and K tower networks hk, where k =
1,2, ..., K for each task respectively. The shared-bottom network
follows the input layer, and the tower networks are built upon the
output of the shared-bottom. Then individual output y;. for each
task follows the corresponding task-specific tower. For task k, the
model can be formulated as,

yr = hF(f(x)). (1)

3.2 Synthetic Data Generation

Prior works [15, 27] indicate that the performance of multi-task
learning models highly depends on the inherent task relatedness
in the data. It is however difficult to study directly how task relat-
edness affects multi-task models in real applications, since in real
applications we cannot easily change the relatedness between tasks
and observe the effect. Therefore to establish an empirical study for
this relationship, we first use synthetic data where we can easily
measure and control the task relatedness.

Inspired by Kang et al. [24], we generate two regression tasks
and use the Pearson correlation of the labels of these two tasks as
the quantitative indicator of task relationships. Since we focus on
DNN models, instead of the linear functions used in [24], we set
the regression model as a combination of sinusoidal functions as
used in [33]. Specifically, we generate the synthetic data as follows.

(1) Given the input feature dimension d, we generate two or-
thogonal unit vectors uj, uz € Rd, ie.,

T

uguz =0, llugllz = 1, Jluzllz = 1.

(2) Given a scale constant ¢ and a correlation score -1 < p < 1,
generate two weight vectors wi, wp such that

Wy =cuj, wy =c¢ (pu1 +4/(1 —pz)uz) .

(3) Randomly sample an input data point x € R? with each of
its element from N (0, 1).
(4) Generate two labels y1, y2 for two regression tasks as follows,

()

m
Y1 =w1Tx+Zsin(aiw1Tx+ﬁi)+el 3)
i=1
m
Y2 =w2Tx+Zsin(aiw2Tx+,B,~)+52 (4)
i=1
where a;, fi,i = 1,2, ..., m are given parameters that control
the shape of the sinusoidal functions and €, e N (0,0.01),

(5) Repeat (3) and (4) until enough data are generated.

Research Track Paper

Due to the non-linear data generation procedure, it’s not straight-
forward to generate tasks with a given label Pearson correlation.
Instead, we manipulate the cosine similarity of the weight vectors
in Eq 2, which is cos(wi, w2) = p, and measuring the resulting label
Pearson correlation afterwards. Note that in the linear case where

yr = Wz— X+ €1
Y2 = WZT X + €2,
the label Pearson correlation of y1, y2 is exactly p.

In the nonlinear case, y; and y2 in Eq 3 and Eq 4 are also positively

correlated, as shown in Figure 2.

In the rest of this paper, for simplicity, we refer to cosine simi-
larity of the weight vectors as “task correlation”.

1.00
0.75
0.50

0.25

label correlation

0.00
0.4 0.6 0.8

weight cosine similarity

1.0

Figure 2: Label Pearson correlation v.s. weight cosine sim-
ilarity (task correlation). X-axis shows the cosine similari-
ties of weight vectors. Y-axis is the resulting Pearson corre-
lation between the labels. For each weight cosine similarity,
we generate 10k data points with two labels and calculate
the Pearson correlation between these two labels. We repeat
this process and plot the average with the error bar indicat-
ing 2 standard deviations among the 100 trials.

correlation 0.5

1.0 —-— correlation 0.9
L 08 correlation 1
%]
o

0.6

0.4

0 2000 4000 6000 8000 10000

number of steps (k)

Figure 3: Performance of the Shared-Bottom model on syn-
thetic data with different task correlation. Tasks with task
correlation 1 means the two tasks have the same weight vec-
tors but independent noises. X-axis is the number of train-
ing steps. Y-axis is the average loss of 200 independent runs.

1933

KDD 2018, August 19-23, 2018, London, United Kingdom

3.3 Impact of Task Relatedness

To verify that low task relatedness hurts model quality in a baseline
multi-task model setup, we conduct control experiments on the
synthetic data as follows.

(1) Given a list of task correlation scores, generate a synthetic
dataset for each score;

(2) Train one Shared-Bottom multi-task model on each of these
datasets respectively while controlling all the model and
training hyper-parameters to remain the same;

(3) Repeat step (1) and (2) hundreds of times with datasets gen-
erated independently but control the list of task correlation
scores and the hyper-parameters the same;

(4) Calculate the average performance of the models for each
task correlation score.

Figure 3 shows the loss curves for different task correlations.
As expected, the performance of the model trends down as the
task correlation decreases. This trend is general for many different
hyper-parameter settings. Here we only show an example of the
control experiment results in Figure 3. In this example, each tower
network is a single-layer neural network with 8 hidden units, and
the shared bottom network is a single-layer network with size=16.
The model is implemented using TensorFlow [1] and trained using
Adam optimizer [25] with the default setting. Note that the two
regression tasks are symmetric so it’s sufficient to report the results
on one task. This phenomenon validates our hypothesis that the
traditional multi-task model is sensitive to the task relationships.

4 MODELING APPROACHES
4.1 Mixture-of-Experts

The Original Mixture-of-Experts (MoE) Model [21] can be
formulated as:

y=) glx)ifi(x), 5)
i=1

where 3 | g(x); = 1 and g(x);, the ith logit of the output of g(x),
indicates the probability for expert f;.

Here, fi,i = 1,...,n are n expert networks and g represents a
gating network that ensembles the results from all experts. More
specifically, the gating network g produces a distribution over the n
experts based on the input, and the final output is a weighted sum
of the outputs of all experts.

MoE Layer : While MoE was first developed as an ensemble method
of multiple individual models, Eigen et al [16] and Shazeer et al [31]
turn it into basic building blocks (MoE layer) and stack them in a
DNN. The MoE layer has the same structure as the MoE model but
accepts the output of the previous layer as input and outputs to a
successive layer. The whole model is then trained in an end-to-end
way.

The main goal of the MoE layer structure proposed by Eigen et
al [16] and Shazeer et al [31] is to achieve conditional computation
[7, 12], where only parts of a network are active on a per-example
basis. For each input example, the model is able to select only a
subset of experts by the gating network conditioned on the input.

Research Track Paper

Correlation 0.5

05 ———- Shared-Bottom 05 \ -
\ —-— OMOoE \
04 04
S MMoE N
2 L |
o) 0.3
0.2
0.1

0

2000 4000 6000 8000 10000
number of steps (k)

0

(a) Performance with correlation 0.5

Correlation 0.9

—+— OMoE

2000 4000 6000 8000 10000
number of steps (k)

(b) Performance with correlation 0.9

KDD 2018, August 19-23, 2018, London, United Kingdom

Correlation 1

Shared-Bottom 0.5 — ==+ Shared-Bottom
04 \\ —-— OMoE
MMoE ’ \ MMoE

0 2000 4000 6000 8000 10000

number of steps (k)

(c) Performance with two identical tasks

Figure 4: Average performance of MMoE, OMoE, and Shared-Bottom on synthetic data with different correlations.

4.2 Multi-gate Mixture-of-Experts

We propose a new MoE model that is designed to capture the task
differences without requiring significantly more model parameters
compared to the shared-bottom multi-task model. The new model
is called Multi-gate Mixture-of-Experts (MMoE) model, where the
key idea is to substitute the shared bottom network f in Eq 1 with
the MoE layer in Eq 5. More importantly, we add a separate gating
network gk for each task k. More precisely, the output of task k is

ye = h*(F5 (), (©)
where fk(x) = ng(x)ifi(x). (7)
i=1

See Figure 1 (c) for an illustration of the model structure.

Our implementation consists of identical multilayer perceptrons
with ReLU activations. The gating networks are simply linear trans-
formations of the input with a softmax layer:

gk(x) = softmax(W.x), 8)
where Wy € R4 s a trainable matrix. n is the number of experts
and d is the feature dimension.

Each gating network can learn to “select” a subset of experts to
use conditioned on the input example. This is desirable for a flexible
parameter sharing in the multi-task learning situation. As a special
case, if only one expert with the highest gate score is selected, each
gating network actually linearly separates the input space into n
regions with each region corresponding to an expert. The MMoE
is able to model the task relationships in a sophisticated way by
deciding how the separations resulted by different gates overlap
with each other. If the tasks are less related, then sharing experts
will be penalized and the gating networks of these tasks will learn
to utilize different experts instead. Compared to the Shared-Bottom
model, the MMOoE only has several additional gating networks, and
the number of model parameters in the gating network is negligible.
Therefore the whole model still enjoys the benefit of knowledge
transfer in multi-task learning as much as possible.

To understand how introducing separate gating network for
each task can help the model learn task-specific information, we
compare with a model structure with all tasks sharing one gate. We
call it One-gate Mixture-of-Experts (OMoE) model. This is a direct

1934

adaption of the MoE layer to the Shared-Bottom multi-task model.
See Figure 1 (b) for an illustration of the model structure.

5 MMOE ON SYNTHETIC DATA

In this section, we want to understand if the MMoE model can in-
deed better handle the situation where tasks are less related. Similar
to Section 3.3, we conduct control experiments on the synthetic
data to investigate this problem. We vary the task correlation of
the synthetic data and observe how the behavior changes for dif-
ferent models. We also conduct a trainability analysis and show
that MoE based models can be more easily trained compared to
Shared-Bottom models.

5.1 Performance on Data with Different Task
Correlations

We repeat the experiments in section 3.3 for the proposed MMoE
model and two baseline models: the Shared-Bottom model and the
OMOoE model.

Model Structures. The input dimension is 100. Both MoE based
models have 8 experts with each expert implemented as a single-
layer network. The size of the hidden layers in the expert network is
16. The tower networks are still single-layer networks with size=38.
We note that the total number of model parameters in the shared
experts and the towers is 100 X 16 X 8 + 16 X 8 X 2 = 13056. For the
baseline Shared-Bottom model, we still set the tower network as a
single-layer network with size=8. We set the single-layer shared
bottom network with size 13056/(100 + 8 X 2) ~ 113.

Results. All the models are trained with the Adam optimizer
and the learning rate is grid searched from [0.0001, 0.001, 0.01].
For each model-correlation pair setting, we have 200 runs with
independent random data generation and model initialization. The
average results are shown in figure 4. The observations are outlined
as follows:

(1) For all models, the performance on the data with higher
correlation is better than that on the data with lower corre-
lation.

(2) The gap between performances on data with different corre-
lations of the MMoE model is much smaller than that of the
OMoE model and the Shared-Bottom model. This trend is
especially obvious when we compare the MMoE model with

Research Track Paper

the OMoE model: in the extreme case where the two tasks
are identical, there is almost no difference in performance
between the MMoE model and the OMoE model; when the
correlation between tasks decreases, however, there is an
obvious degeneration of performance for the OMoE model
while there is little influence on the MMoE model. There-
fore, it’s critical to have task-specific gates to model the task
differences in the low relatedness case.

Both MoE models are better than the Shared-Bottom model
in all scenarios in terms of average performance. This indi-
cates that the MoE structure itself brings additional benefits.
Following this observation, we show in the next subsection
that the MoE models have better trainability than the Shared-
Bottom model.

®)

5.2 Trainability

For large neural network models, we care much about their trainabil-
ity, i.e., how robust the model is within a range of hyper-parameter
settings and model initializations.

Recently, Collins et al [10] find that some gated RNN models
(like LSTM and GRU) we thought to perform better than the vanilla
RNN are simply easier to train rather than having better model
capacities. While we have demonstrated that MMoE can better
handle the situation where tasks are less related, we also want to
have a deeper understanding how it behaves in terms of trainability.

With our synthetic data, we can naturally investigate the ro-
bustness of our model against the randomness in the data and
model initialization. We repeat the experiments under each setting
multiple times. Each time the data are generated from the same
distribution but different random seeds and the models are also
initialized differently. We plot the histogram of the final loss values
from repeated runs in Figure 5.

There are three interesting observations from the histogram.
First, in all task correlation settings, the performance variances of
Shared-Bottom model are much larger than those of the MoE based
model. This means that Shared-Bottom models in general have
much more poor quality local minima than the MoE based models
do. Second, while the performance variance of OMoE models is
similarly robust as that of MMoE models when task correlation is
1, the robustness of the OMoE has an obvious drop when the task
correlation decreases to 0.5. Note that the only difference between
MMOoE and OMOoE is whether there is a multi-gate structure. This
validates the usefulness of the multi-gate structure in resolving bad
local minima caused by the conflict from task difference. Finally,
it’s worth to observe that the lowest losses of all the three mod-
els are comparable. This is not surprising as neural networks are
theoretically universal approximator. With enough model capacity,
there should exist a “right” Shared-Bottom model that learns both
tasks well. However, note that this is the distribution of 200 inde-
pendent runs of experiments. And we suspect that for larger and
more complicated model (e.g. when the shared bottom network is a
recurrent neural network), the chance of getting the “right” model
of the task relationship will be even lower. Therefore, explicitly
modeling the task relationship is still desirable.

1935

KDD 2018, August 19-23, 2018, London, United Kingdom

6 REAL DATA EXPERIMENTS

In this section, we conduct experiments on real datasets to validate
the effectiveness of our approach.

6.1 Baseline Methods

Besides the Shared-Bottom multi-task model, we compare our ap-
proach with several state-of-the-art multi-task deep neural network
models that attempt to learn the task relationship from the data.

L2-Constrained [15]: This method is designed for a cross-lingual
problem with two tasks. In this method, parameters used for differ-
ent tasks are shared softly by an L2 constraint.

Given yi. as the ground truth label for task k, k € 1, 2, the pre-
diction of task k is represented as

i = £ (x:0k)s

where 0. are model parameters.
The objective function of this method is

EL(y1, f(x;61)) + EL(y2. £ (x;62)) + all1 — 02113

where yi, y2 are the ground truth label for task 1 and task 2, and
a is a hyper-parameter. This method models the task relatedness
with the magnitude of a.

Cross-Stitch [27]: This method shares knowledge between two
tasks by introducing a “Cross-Stitch” unit. The Cross-Stitch unit
takes the input of separated hidden layers x; and x from task 1 and
2, and outputs fc{ and ié respectively by the following equation:

}2]1. _lan a12 xi
)Zé - 21 22 xé ’

where @i, j, k = 1,2 is a trainable parameter representing the cross
transfer from task k to task j. The x; and Xy are sent to the higher
level layer in task 1 and task 2 respectively.

Tensor-Factorization [34]: In this method, weights from multiple
tasks are modeled as tensors and tensor factorization methods are
used for parameter sharing across tasks. For our comparison, we
implement Tucker decomposition for learning multi-task models,
which is reported to deliver the most reliable results [34]. For ex-
ample, given input hidden-layer size m, output hidden-layer size n
and task number k, the weights W, which is a m X n X k tensor, is
derived from the following equation:

n o r n

W = Z Z Z S(i1, iz, 13) - U1 (:, i1) o Ua(:, i2) o Us (s, i3),
iy i i3

where tensor S of size r; X rp X r3, matrix U; of size m X r1, Uy of

size n X ry, and Us of size k X r3 are trainable parameters. All of

them are trained together via standard backpropagation. r1, ry and

r3 are hyper-parameters.

6.2 Hyper-Parameter Tuning

We adopt a hyper-parameter tuner, which is used in recent deep
learning frameworks [10], to search the best hyperparameters for
all the models in the experiments with real datasets. The tuning
algorithm is a Gaussian Process model similar to Spearmint as
introduced in [14, 32].

Research Track Paper

Correlation 0.5

Correlation 0.9

KDD 2018, August 19-23, 2018, London, United Kingdom

Correlation 1

0.8
0.6 0.6 0.6
S
=04 0.4 0.4
=
0.2 0.2 0.2
0.0 == - 00 - = 0.0 — = -
0.00 0.25 0.50 0.00 0.25 0.50 0.00 0.25 0.50
0.8 0.8 0.8
0.6 0.6 0.6
s
= 0.4 0.4 0.4
(©)
0.2 0.2 0.2
0.0 - - 0.0 = —— 00 -
0.00 0.25 0.50 0.00 0.25 0.50 0.00 0.25 0.50
€ 0.8 0.8 0.8
o
£ 0.6 0.6 0.6
@
_80.4 0.4 0.4
< 0.2 I J_ 0.2 0.2
@©
<
0.00 0.25 0.50 0.00 0.25 0.50 0.00 0.25 0.50

Figure 5: Histogram of performance of MMoE, OMoE, and Shared-Bottom multi-task model on synthetic data with different

correlations.

To make the comparison fair, we constrain the maximum model
size of all methods by setting a same upper bound for the number of
hidden units per layer, which is 2048. For MMOE, it is the “number of
experts” X “hidden units per expert”. Our approach and all baseline
methods are implemented using TensorFlow [1].

We tune the learning rates and the number of training steps for
all methods. We also tune some method-specific hyper-parameters:

e MMOE: Number of experts, number of hidden units per
expert.

e L2-Constrained: Hidden-layer size. Weight « of the L2 con-
straint.

o Cross-Stitch: Hidden-layer size, Cross-Stitch layer size.

e Tensor-Factorization: ry, ry, r3 for Tuck Decomposition,
hidden-layer size.

6.3 Census-income Data

In this subsection, we report and discuss experiment results on the
census-income data.

6.3.1 Dataset Description. The UCI census-income dataset [2]
is extracted from the 1994 census database. It contains 299,285
instances of demographic information of American adults. There are
40 features in total. We construct two multi-task learning problems
from this dataset by setting some of the features as prediction
targets and calculate the absolute value of Pearson correlation of
the task labels over 10,000 random samples:
(1) Task 1: Predict whether the income exceeds $50K;
Task 2: Predict whether this person’s marital status is never

1936

married.
Absolute Pearson correlation: 0.1768.

(2) Task 1: Predict whether the education level is at least college;
Task 2: Predict whether this person’s marital status is never
married.

Absolute Pearson correlation: 0.2373.

In the dataset, there are 199,523 training examples and 99,762 test
examples. We further randomly split test examples into a validation
dataset and a test dataset by the fraction of 1:1.

Note that we remove education and marital status from input
features as they are treated as labels in these setups. We compare
MMOoE with aforementioned baseline methods. Since both groups
of tasks are binary classification problems, we use AUC scores as
the evaluation metrics. In both groups, we treat the marital status
task as the auxiliary task, and treat the income task in the first
group and the education task in the second group as the main tasks.
For hyper-parameter tuning, we use the AUC of the main task on
the validation set as the objective. For each method, we use the
hyper-parameter tuner conducting thousands of experiments to
find the best hyper-parameter setup. After the hyper-parameter
tuner finds the best hyper-parameter for each method, we train
each method on training dataset 400 times with random parameter
initialization and report the results on the test dataset.

6.3.2 Results. For both groups, we report the mean AUC over
400 runs, and the AUC of the run where best main task performance
is obtained. Table 1 and Table 2 show the results of two groups

Research Track Paper

of tasks. We also tune and train single-task models by training a
separate model for each task and report their results.

Table 1: Performance on the first group of UCI Census-
income dataset.

AUC/Income AUC/Marital Stat
Group 1
w/ best
best mean | . mean
income
Single-Task 0.9398 0.9337 | 0.9933 0.9922
Shared-Bottom 0.9361 0.9295 0.9915 0.9921
L2-Constrained 0.9389 | 0.9359 | 0.9922 | 0.9918
Cross-Stitch 0.9406 | 0.9361 | 0.9917 0.9922
Tensor-Factorization | 0.7460 | 0.6765 0.8175 0.8412
OMoE 0.9387 | 0.9319 | 0.9928 | 0.9923
MMoE 0.9410 | 0.9359 0.9926 0.9927

Table 2: Performance on the second group of UCI Census-
income dataset.

AUC/Education AUC/Marital Stat

Group 2

w/ best
best mean . mean
education

Single—Task 0.8843 0.8792 0.9933 0.9922
Shared-Bottom 0.8836 0.8813 0.9927 0.9917
L2-Constrained 0.8855 0.8823 0.9923 0.9918
Cross-Stitch 0.8855 0.8819 0.9919 0.9921
Tensor-Factorization | 0.7367 | 0.7256 0.7453 0.7497
OMOoE 0.8852 | 0.8813 0.9915 0.9912
MMoE 0.8860 | 0.8826 0.9932 0.9924

Given the task relatedness (roughly measured by the Pearson
correlation) is not very strong in either group, the Shared-Bottom
model is almost always the worst among multi-task models (except
for Tensor-Factorization). Both L2-Constrained and Cross-Stitch
have separate model parameters for each task and add constraints
on how to learn these parameters, and therefore perform better than
Shared-Bottom. However, having constraints on model parameter
learning heavily relies on the task relationship assumptions, which
is less flexible than the parameter modulation mechanism used by
MMOoE. So MMoE outperforms other multi-task models in all means
in group 2, where the task relatedness is even smaller than group 1.

The Tensor-Factorization method is the worst in both groups.
This is because it tends to generalize the hidden-layer weights for all
of the tasks in lower rank tensor and matrices. This method can be
very sensitive to task relatedness, since it tends to over-generalize
when tasks are less related, and needs more data and longer time
to train.

The multi-task models are not tuned for the auxiliary marital
status task on validation set while the single-task model is. So it is
reasonable that the single-task model gets the best performance on
the auxiliary task.

1937

KDD 2018, August 19-23, 2018, London, United Kingdom

6.4 Large-scale Content Recommendation

In this subsection, we conduct experiments on a large-scale content
recommendation system in Google Inc., where the recommenda-
tions are generated from hundreds of millions of unique items for
billions of users. Specifically, given a user’s current behavior of con-
suming an item, this recommendation system targets at showing
the user a list of relevant items to consume next.

Our recommendation system adopts similar framework as pro-
posed in some existing content recommendation frameworks [11],
which has a candidate generator followed by a deep ranking model.
The deep ranking model in our setup is trained to optimize for two
types of ranking objectives: (1) optimizing for engagement related
objectives such as click through rate and engagement time; (2) op-
timizing for satisfaction related objectives, such as like rate. Our
training data include hundreds of billions of user implicit feedbacks
such as clicks and likes. If trained separately, the model for each
task needs to learn billions of parameters. Therefore, compared to
learning multiple objectives separately, a Shared-Bottom architec-
ture comes with the benefit of smaller model size. In fact, such a
Shared-Bottom model is already used in production.

6.4.1 Experiment Setup. We evaluate the multi-task models by
creating two binary classification tasks for the deep ranking model:
(1) predicting a user engagement related behavior; (2) predicting
a user satisfaction related behavior. We name these two tasks as
engagement subtask and satisfaction subtask.

Our recommendation system uses embeddings for sparse fea-
tures and normalizes all dense features to [0, 1] scale. For the Shared-
Bottom model, we implement the shared bottom network as a feed-
forward neural network with several fully-connected layers with
ReLU activation. A fully-connected layer built on top of the shared
bottom network for each task serves as the tower network. For
MMOoE, we simply change the top layer of the shared bottom net-
work to an MMoE layer and keep the output hidden units with the
same dimensionality. Therefore, we don’t add extra noticeable com-
putation costs in model training and serving. We also implement
baseline methods such as L2-Constrained and Cross-Stitch. Due to
their model architectures, they have roughly double the number
of parameters comparing to the Shared-Bottom model. We do not
compare with Tensor-Factorization because the computation of
the Tucker product cannot scale up to billion level without heavy
efficiency engineering. All models are optimized using mini-batch
Stochastic Gradient Descent (SGD) with batch size 1024.

6.4.2 Offline Evaluation Results. For offline evaluation, we train
the models on a fixed set of 30 billion user implicit feedbacks and
evaluate on a 1 million hold-out dataset. Given that the label of the
satisfaction subtask is much sparser than the engagement subtask,
the offline results have very high noise levels. We only show the
AUC scores and R-Squared scores on the engagement subtask in
Table 3.

We show the results after training 2 million steps (10 billion
examples with batch size 1024), 4 million steps and 6 million steps.
MMOoE outperforms other models in terms of both metrics. L2-
Constrained and Cross-Stitch are worse than the Shared-Bottom
model. This is likely because these two models are built upon two

Research Track Paper

KDD 2018, August 19-23, 2018, London, United Kingdom

Table 3: Engagement performance on the real large-scale recommendation system.

Metric AUC@2M | AUC@4M | AUC@6M | R2@2M | R2@4M | R2@6M
Shared-Bottom 0.6879 0.6888 0.6900 0.08812 | 0.09159 | 0.09287
L2-Constrained 0.6866 0.6881 0.6895 0.08668 | 0.09030 | 0.09213

Cross-Stitch 0.6880 0.6885 0.6899 0.08949 | 0.09112 | 0.09332

OMoE 0.6876 0.6891 0.6893 0.08749 | 0.09085 | 0.09230

MMoE 0.6894 0.6897 0.6908 0.08978 | 0.09263 | 0.09362

separate single-task models and have too many model parameters
to be well constrained.

To better understand how the gates work, we show the distri-
bution of the softmax gate of each task in Figure 6. We can see
that MMOE learns the difference between these two tasks and au-
tomatically balances the shared and non-shared parameters. Since
satisfaction subtask’s labels are sparser than the engagement sub-
task’s, the gate for satisfaction subtask is more focused on a single
expert.

0.8
Bl Engagement
c 0.6 Satisfaction
o
=}
=]
2 0.4
S
0
o .y
O'O .
0 1 2 3

gate id

Figure 6: Softmax Gate Distribution for Engagement and Sat-
isfaction Subtasks.

6.4.3 Live Experiment Results. At last, we conduct live experi-
ments for our MMoE model on the content recommendation system.
We do not conduct live experiments for L2-Constrained and Cross-
Stitch methods because both models double the serving time by
introducing more parameters.

We conduct two sets of experiments. The first experiment is to
compare a Shared-Bottom model with a Single-Task model. The
Shared-Bottom model is trained on both engagement subtask and
satisfaction subtask. The Single-Task model is trained on the engage-
ment subtask only. Note that though not trained on the satisfaction
subtask, the Single-Task model serves as a ranking model at test
time so we can also calculate satisfaction metrics on it. The second
experiment is to compare our MMoE model with the Shared-Bottom
model in the first experiment. Both experiments are done using the
same amount of live traffic.

Table 4 shows the results of these live experiments. First, by
using Shared-Bottom model, we see a huge improvement on the
satisfaction live metric of 19.72%, and a slight decrease of -0.22% on
the engagement live metric. Second, by using MMoE, we improve
both metrics comparing with the Shared-Bottom model. In this
recommendation system, engagement metric has a much larger

1938

Table 4: Live experiment results

Live experiment Satisfaction Metric

Shared-Bottom

Engagement Metric

Improvement over -0.22% * 19.72% **
Single-Task
MMoE
Improvement over 0.25% ** 2.65% **

Shared-Bottom

* indicates confidence interval level 90%
** indicates confidence interval level 95%

raw value than the satisfaction metric, and it is desirable to have no
engagement metric loss or even gains while improving satisfaction
metric.

7 CONCLUSION

We propose a novel multi-task learning approach, Multi-gate MoE
(MMOoE), that explicitly learns to model task relationship from data.
We show by control experiments on synthetic data that the pro-
posed approach can better handle the scenario where tasks are less
related. We also show that the MMOoE is easier to train compared to
baseline methods. With experiments on benchmark dataset and a
real large-scale recommendation system, we demonstrate the suc-
cess of the proposed method over several state-of-the-art baseline
multi-task learning models.

Besides the benefits above, another major design consideration
in real machine learning production systems is the computational
efficiency. This is also one of the most important reasons that the
Shared-Bottom multi-task model is widely used. The shared part
of the model saves a lot of computation at serving time [18, 29].
All of the three state-of-the-art baseline models (see section 6.1)
learn the task relationship at the loss of this computational benefit.
The MMOoE model, however, largely preserves the computational
advantage since the gating networks are usually light-weight and
the expert networks are shared across all the tasks. Moreover, this
model has the potential to achieve even better computational effi-
ciency by making the gating network as a sparse top-k gate [31].
We hope this work inspire other researchers to further investigate
multi-task modeling using these approaches.

REFERENCES

[1] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
2016. Tensorflow: Large-scale machine learning on heterogeneous distributed
systems. arXiv preprint arXiv:1603.04467 (2016).

[2] Arthur Asuncion and David Newman. 2007. UCI machine learning repository.
(2007).

Research Track Paper

(3]

(4]

[12]

[13]

[14

[16]

[17]

(18

[19

Trapit Bansal, David Belanger, and Andrew McCallum. 2016. Ask the gru: Multi-
task learning for deep text recommendations. In Proceedings of the 10th ACM
Conference on Recommender Systems. ACM, 107-114.

Jonathan Baxter et al. 2000. A model of inductive bias learning. j. Artif. Intell.
Res.(JAIR) 12, 149-198 (2000), 3.

Shai Ben-David, Johannes Gehrke, and Reba Schuller. 2002. A theoretical frame-
work for learning from a pool of disparate data sources. In Proceedings of the
eighth ACM SIGKDD international conference on Knowledge discovery and data
mining. ACM, 443-449.

Shai Ben-David, Reba Schuller, et al. 2003. Exploiting task relatedness for multiple
task learning. Lecture notes in computer science (2003), 567-580.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. 2013. Estimating or
propagating gradients through stochastic neurons for conditional computation.
arXiv preprint arXiv:1308.3432 (2013).

Rich Caruana. 1998. Multitask learning. In Learning to learn. Springer, 95-133.
R Caruna. 1993. Multitask learning: A knowledge-based source of inductive bias.
In Machine Learning: Proceedings of the Tenth International Conference. 41-48.
Jasmine Collins, Jascha Sohl-Dickstein, and David Sussillo. 2016. Capacity and
Trainability in Recurrent Neural Networks. arXiv preprint arXiv:1611.09913
(2016).

Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks
for youtube recommendations. In Proceedings of the 10th ACM Conference on
Recommender Systems. ACM, 191-198.

Andrew Davis and Itamar Arel. 2013. Low-rank approximations for conditional
feedforward computation in deep neural networks. arXiv preprint arXiv:1312.4461
(2013).

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark
Mao, Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. 2012. Large scale
distributed deep networks. In Advances in neural information processing systems.
1223-1231.

Thomas Desautels, Andreas Krause, and Joel W Burdick. 2014. Parallelizing
exploration-exploitation tradeoffs in gaussian process bandit optimization. The
Journal of Machine Learning Research 15, 1 (2014), 3873-3923.

Long Duong, Trevor Cohn, Steven Bird, and Paul Cook. 2015. Low Resource
Dependency Parsing: Cross-lingual Parameter Sharing in a Neural Network
Parser.. In ACL (2). 845-850.

David Eigen, Marc’Aurelio Ranzato, and Ilya Sutskever. 2013. Learning factored
representations in a deep mixture of experts. arXiv preprint arXiv:1312.4314
(2013).

Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, An-
drei A Rusu, Alexander Pritzel, and Daan Wierstra. 2017. Pathnet: Evolution chan-
nels gradient descent in super neural networks. arXiv preprint arXiv:1701.08734
(2017).

Ross Girshick. 2015. Fast r-cnn. In Proceedings of the IEEE international conference
on computer vision. 1440-1448.

Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training
deep feedforward neural networks. In Proceedings of the Thirteenth International

KDD 2018, August 19-23, 2018, London, United Kingdom

Conference on Artificial Intelligence and Statistics. 249-256.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in
a neural network. arXiv preprint arXiv:1503.02531 (2015).

Robert A Jacobs, Michael I Jordan, Steven] Nowlan, and Geoffrey E Hinton. 1991.
Adaptive mixtures of local experts. Neural computation 3, 1 (1991), 79-87.
Melvin Johnson, Mike Schuster, Quoc V Le, Maxim Krikun, Yonghui Wu, Zhifeng
Chen, Nikhil Thorat, Fernanda Viégas, Martin Wattenberg, Greg Corrado, et al.
2016. Google’s multilingual neural machine translation system: enabling zero-
shot translation. arXiv preprint arXiv:1611.04558 (2016).

Lukasz Kaiser, Aidan N Gomez, Noam Shazeer, Ashish Vaswani, Niki Parmar,
Llion Jones, and Jakob Uszkoreit. 2017. One Model To Learn Them All. arXiv
preprint arXiv:1706.05137 (2017).

Zhuoliang Kang, Kristen Grauman, and Fei Sha. 2011. Learning with whom
to share in multi-task feature learning. In Proceedings of the 28th International
Conference on Machine Learning (ICML-11). 521-528.

Diederik Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980 (2014).

Minh-Thang Luong, Quoc V Le, Ilya Sutskever, Oriol Vinyals, and Lukasz Kaiser.
2015. Multi-task sequence to sequence learning. arXiv preprint arXiv:1511.06114
(2015).

Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Martial Hebert. 2016.
Cross-stitch networks for multi-task learning. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition. 3994-4003.

Xia Ning and George Karypis. 2010. Multi-task learning for recommender system.
In Proceedings of 2nd Asian Conference on Machine Learning. 269-284.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster R-CNN:
Towards real-time object detection with region proposal networks. In Advances
in neural information processing systems. 91-99.

Sebastian Ruder. 2017. An overview of multi-task learning in deep neural net-
works. arXiv preprint arXiv:1706.05098 (2017).

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le,
Geoffrey Hinton, and Jeff Dean. 2017. Outrageously large neural networks: The

sparsely-gated mixture-of-experts lzgler. arXiv preprint arXiv:1701.06538 (2017).
Jasper Snoek, Hugo Larochelle, and Ryan P Adams. 2012. Practical bayesian

optimization of machine learning algorithms. In Advances in neural information
processing systems. 2951-2959.

Shengyang Sun, Changyou Chen, and Lawrence Carin. 2017. Learning Structured
Weight Uncertainty in Bayesian Neural Networks. In Artificial Intelligence and
Statistics. 1283-1292.

Yongxin Yang and Timothy Hospedales. 2016. Deep multi-task representation
learning: A tensor factorisation approach. arXiv preprint arXiv:1605.06391 (2016).
Zhe Zhao, Zhiyuan Cheng, Lichan Hong, and Ed H Chi. 2015. Improving user topic
interest profiles by behavior factorization. In Proceedings of the 24th International
Conference on World Wide Web. International World Wide Web Conferences
Steering Committee, 1406-1416.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Multi-task Learning in DNNs
	2.2 Ensemble of Subnets & Mixture of Experts
	2.3 Multi-task Learning Applications

	3 Preliminary
	3.1 Shared-bottom Multi-task Model
	3.2 Synthetic Data Generation
	3.3 Impact of Task Relatedness

	4 Modeling Approaches
	4.1 Mixture-of-Experts
	4.2 Multi-gate Mixture-of-Experts

	5 MMoE on Synthetic Data
	5.1 Performance on Data with Different Task Correlations
	5.2 Trainability

	6 Real Data Experiments
	6.1 Baseline Methods
	6.2 Hyper-Parameter Tuning
	6.3 Census-income Data
	6.4 Large-scale Content Recommendation

	7 Conclusion
	References

