⚠️ Alpha内测版本警告:此为早期内部构建版本,尚不完整且可能存在错误,欢迎大家提Issue反馈问题或建议。
Skip to content

4.1 Environment Setup (ODL/TIGRE)

Goal: get a minimal, reproducible environment to run the Chapter 4 case studies.


1) Create a clean Python environment

bash
conda create -n medimg python=3.10
conda activate medimg
pip install numpy scipy matplotlib scikit-image

bash
pip install odl

Quick check:

python
import odl
space = odl.uniform_discr([-1, -1], [1, 1], (64, 64))
print(space.one().shape)

3) TIGRE (optional)

TIGRE installation varies across platforms/CUDA versions. If you don’t want to deal with CUDA yet, you can skip TIGRE and still complete the case studies with CPU-friendly tooling.

Released under the MIT License.