3.9 PyTorch优化器#

深度学习的目标是通过不断改变网络参数,使得参数能够对输入做各种非线性变换拟合输出,本质上就是一个函数去寻找最优解,只不过这个最优解是一个矩阵,而如何快速求得这个最优解是深度学习研究的一个重点,以经典的resnet-50为例,它大约有2000万个系数需要进行计算,那么我们如何计算出这么多系数,有以下两种方法:

  1. 第一种是直接暴力穷举一遍参数,这种方法从理论上行得通,但是实施上可能性基本为0,因为参数量过于庞大。

  2. 为了使求解参数过程更快,人们提出了第二种办法,即BP+优化器逼近求解。

因此,优化器是根据网络反向传播的梯度信息来更新网络的参数,以起到降低loss函数计算值,使得模型输出更加接近真实标签。

经过本节的学习,你将收获:

  • 了解PyTorch的优化器

  • 学会使用PyTorch提供的优化器进行优化

  • 优化器的属性和构造

  • 优化器的对比

3.9.1 PyTorch提供的优化器#

PyTorch很人性化的给我们提供了一个优化器的库torch.optim,在这里面提供了多种优化器。

  • torch.optim.SGD

  • torch.optim.ASGD

  • torch.optim.Adadelta

  • torch.optim.Adagrad

  • torch.optim.Adam

  • torch.optim.AdamW

  • torch.optim.Adamax

  • torch.optim.RAdam

  • torch.optim.NAdam

  • torch.optim.SparseAdam

  • torch.optim.LBFGS

  • torch.optim.RMSprop

  • torch.optim.Rprop

而以上这些优化算法均继承于Optimizer,下面我们先来看下所有优化器的基类Optimizer。定义如下:

class Optimizer(object):
    def __init__(self, params, defaults):        
        self.defaults = defaults
        self.state = defaultdict(dict)
        self.param_groups = []

Optimizer有三个属性:

  • defaults:存储的是优化器的超参数,例子如下:

{'lr': 0.1, 'momentum': 0.9, 'dampening': 0, 'weight_decay': 0, 'nesterov': False}
  • state:参数的缓存,例子如下:

defaultdict(<class 'dict'>, {tensor([[ 0.3864, -0.0131],
        [-0.1911, -0.4511]], requires_grad=True): {'momentum_buffer': tensor([[0.0052, 0.0052],
        [0.0052, 0.0052]])}})
  • param_groups:管理的参数组,是一个list,其中每个元素是一个字典,顺序是params,lr,momentum,dampening,weight_decay,nesterov,例子如下:

[{'params': [tensor([[-0.1022, -1.6890],[-1.5116, -1.7846]], requires_grad=True)], 'lr': 1, 'momentum': 0, 'dampening': 0, 'weight_decay': 0, 'nesterov': False}]

Optimizer还有以下的方法:

  • zero_grad():清空所管理参数的梯度,PyTorch的特性是张量的梯度不自动清零,因此每次反向传播后都需要清空梯度。

def zero_grad(self, set_to_none: bool = False):
    for group in self.param_groups:
        for p in group['params']:
            if p.grad is not None:  #梯度不为空
                if set_to_none: 
                    p.grad = None
                else:
                    if p.grad.grad_fn is not None:
                        p.grad.detach_()
                    else:
                        p.grad.requires_grad_(False)
                    p.grad.zero_()# 梯度设置为0
  • step():执行一步梯度更新,参数更新

def step(self, closure): 
    raise NotImplementedError
  • add_param_group():添加参数组

def add_param_group(self, param_group):
    assert isinstance(param_group, dict), "param group must be a dict"
# 检查类型是否为tensor
    params = param_group['params']
    if isinstance(params, torch.Tensor):
        param_group['params'] = [params]
    elif isinstance(params, set):
        raise TypeError('optimizer parameters need to be organized in ordered collections, but '
                        'the ordering of tensors in sets will change between runs. Please use a list instead.')
    else:
        param_group['params'] = list(params)
    for param in param_group['params']:
        if not isinstance(param, torch.Tensor):
            raise TypeError("optimizer can only optimize Tensors, "
                            "but one of the params is " + torch.typename(param))
        if not param.is_leaf:
            raise ValueError("can't optimize a non-leaf Tensor")

    for name, default in self.defaults.items():
        if default is required and name not in param_group:
            raise ValueError("parameter group didn't specify a value of required optimization parameter " +
                             name)
        else:
            param_group.setdefault(name, default)

    params = param_group['params']
    if len(params) != len(set(params)):
        warnings.warn("optimizer contains a parameter group with duplicate parameters; "
                      "in future, this will cause an error; "
                      "see github.com/PyTorch/PyTorch/issues/40967 for more information", stacklevel=3)
# 上面好像都在进行一些类的检测,报Warning和Error
    param_set = set()
    for group in self.param_groups:
        param_set.update(set(group['params']))

    if not param_set.isdisjoint(set(param_group['params'])):
        raise ValueError("some parameters appear in more than one parameter group")
# 添加参数
    self.param_groups.append(param_group)
  • load_state_dict() :加载状态参数字典,可以用来进行模型的断点续训练,继续上次的参数进行训练

def load_state_dict(self, state_dict):
    r"""Loads the optimizer state.

    Arguments:
        state_dict (dict): optimizer state. Should be an object returned
            from a call to :meth:`state_dict`.
    """
    # deepcopy, to be consistent with module API
    state_dict = deepcopy(state_dict)
    # Validate the state_dict
    groups = self.param_groups
    saved_groups = state_dict['param_groups']

    if len(groups) != len(saved_groups):
        raise ValueError("loaded state dict has a different number of "
                         "parameter groups")
    param_lens = (len(g['params']) for g in groups)
    saved_lens = (len(g['params']) for g in saved_groups)
    if any(p_len != s_len for p_len, s_len in zip(param_lens, saved_lens)):
        raise ValueError("loaded state dict contains a parameter group "
                         "that doesn't match the size of optimizer's group")

    # Update the state
    id_map = {old_id: p for old_id, p in
              zip(chain.from_iterable((g['params'] for g in saved_groups)),
                  chain.from_iterable((g['params'] for g in groups)))}

    def cast(param, value):
        r"""Make a deep copy of value, casting all tensors to device of param."""
   		.....

    # Copy state assigned to params (and cast tensors to appropriate types).
    # State that is not assigned to params is copied as is (needed for
    # backward compatibility).
    state = defaultdict(dict)
    for k, v in state_dict['state'].items():
        if k in id_map:
            param = id_map[k]
            state[param] = cast(param, v)
        else:
            state[k] = v

    # Update parameter groups, setting their 'params' value
    def update_group(group, new_group):
       ...
    param_groups = [
        update_group(g, ng) for g, ng in zip(groups, saved_groups)]
    self.__setstate__({'state': state, 'param_groups': param_groups})
  • state_dict():获取优化器当前状态信息字典

def state_dict(self):
    r"""Returns the state of the optimizer as a :class:`dict`.

    It contains two entries:

    * state - a dict holding current optimization state. Its content
        differs between optimizer classes.
    * param_groups - a dict containing all parameter groups
    """
    # Save order indices instead of Tensors
    param_mappings = {}
    start_index = 0

    def pack_group(group):
		......
    param_groups = [pack_group(g) for g in self.param_groups]
    # Remap state to use order indices as keys
    packed_state = {(param_mappings[id(k)] if isinstance(k, torch.Tensor) else k): v
                    for k, v in self.state.items()}
    return {
        'state': packed_state,
        'param_groups': param_groups,
    }

3.9.2 实际操作#

import os
import torch

# 设置权重,服从正态分布  --> 2 x 2
weight = torch.randn((2, 2), requires_grad=True)
# 设置梯度为全1矩阵  --> 2 x 2
weight.grad = torch.ones((2, 2))
# 输出现有的weight和data
print("The data of weight before step:\n{}".format(weight.data))
print("The grad of weight before step:\n{}".format(weight.grad))
# 实例化优化器
optimizer = torch.optim.SGD([weight], lr=0.1, momentum=0.9)
# 进行一步操作
optimizer.step()
# 查看进行一步后的值,梯度
print("The data of weight after step:\n{}".format(weight.data))
print("The grad of weight after step:\n{}".format(weight.grad))
# 权重清零
optimizer.zero_grad()
# 检验权重是否为0
print("The grad of weight after optimizer.zero_grad():\n{}".format(weight.grad))
# 输出参数
print("optimizer.params_group is \n{}".format(optimizer.param_groups))
# 查看参数位置,optimizer和weight的位置一样,我觉得这里可以参考Python是基于值管理
print("weight in optimizer:{}\nweight in weight:{}\n".format(id(optimizer.param_groups[0]['params'][0]), id(weight)))
# 添加参数:weight2
weight2 = torch.randn((3, 3), requires_grad=True)
optimizer.add_param_group({"params": weight2, 'lr': 0.0001, 'nesterov': True})
# 查看现有的参数
print("optimizer.param_groups is\n{}".format(optimizer.param_groups))
# 查看当前状态信息
opt_state_dict = optimizer.state_dict()
print("state_dict before step:\n", opt_state_dict)
# 进行5次step操作
for _ in range(50):
    optimizer.step()
# 输出现有状态信息
print("state_dict after step:\n", optimizer.state_dict())
# 保存参数信息
torch.save(optimizer.state_dict(),os.path.join(r"D:\pythonProject\Attention_Unet", "optimizer_state_dict.pkl"))
print("----------done-----------")
# 加载参数信息
state_dict = torch.load(r"D:\pythonProject\Attention_Unet\optimizer_state_dict.pkl") # 需要修改为你自己的路径
optimizer.load_state_dict(state_dict)
print("load state_dict successfully\n{}".format(state_dict))
# 输出最后属性信息
print("\n{}".format(optimizer.defaults))
print("\n{}".format(optimizer.state))
print("\n{}".format(optimizer.param_groups))

3.9.3 输出结果#

# 进行更新前的数据,梯度
The data of weight before step:
tensor([[-0.3077, -0.1808],
        [-0.7462, -1.5556]])
The grad of weight before step:
tensor([[1., 1.],
        [1., 1.]])
# 进行更新后的数据,梯度
The data of weight after step:
tensor([[-0.4077, -0.2808],
        [-0.8462, -1.6556]])
The grad of weight after step:
tensor([[1., 1.],
        [1., 1.]])
# 进行梯度清零的梯度
The grad of weight after optimizer.zero_grad():
tensor([[0., 0.],
        [0., 0.]])
# 输出信息
optimizer.params_group is 
[{'params': [tensor([[-0.4077, -0.2808],
        [-0.8462, -1.6556]], requires_grad=True)], 'lr': 0.1, 'momentum': 0.9, 'dampening': 0, 'weight_decay': 0, 'nesterov': False}]

# 证明了优化器的和weight的储存是在一个地方,Python基于值管理
weight in optimizer:1841923407424
weight in weight:1841923407424
    
# 输出参数
optimizer.param_groups is
[{'params': [tensor([[-0.4077, -0.2808],
        [-0.8462, -1.6556]], requires_grad=True)], 'lr': 0.1, 'momentum': 0.9, 'dampening': 0, 'weight_decay': 0, 'nesterov': False}, {'params': [tensor([[ 0.4539, -2.1901, -0.6662],
        [ 0.6630, -1.5178, -0.8708],
        [-2.0222,  1.4573,  0.8657]], requires_grad=True)], 'lr': 0.0001, 'nesterov': True, 'momentum': 0.9, 'dampening': 0, 'weight_decay': 0}]

# 进行更新前的参数查看,用state_dict
state_dict before step:
 {'state': {0: {'momentum_buffer': tensor([[1., 1.],
        [1., 1.]])}}, 'param_groups': [{'lr': 0.1, 'momentum': 0.9, 'dampening': 0, 'weight_decay': 0, 'nesterov': False, 'params': [0]}, {'lr': 0.0001, 'nesterov': True, 'momentum': 0.9, 'dampening': 0, 'weight_decay': 0, 'params': [1]}]}
# 进行更新后的参数查看,用state_dict
state_dict after step:
 {'state': {0: {'momentum_buffer': tensor([[0.0052, 0.0052],
        [0.0052, 0.0052]])}}, 'param_groups': [{'lr': 0.1, 'momentum': 0.9, 'dampening': 0, 'weight_decay': 0, 'nesterov': False, 'params': [0]}, {'lr': 0.0001, 'nesterov': True, 'momentum': 0.9, 'dampening': 0, 'weight_decay': 0, 'params': [1]}]}

# 存储信息完毕
----------done-----------
# 加载参数信息成功
load state_dict successfully
# 加载参数信息
{'state': {0: {'momentum_buffer': tensor([[0.0052, 0.0052],
        [0.0052, 0.0052]])}}, 'param_groups': [{'lr': 0.1, 'momentum': 0.9, 'dampening': 0, 'weight_decay': 0, 'nesterov': False, 'params': [0]}, {'lr': 0.0001, 'nesterov': True, 'momentum': 0.9, 'dampening': 0, 'weight_decay': 0, 'params': [1]}]}

# defaults的属性输出
{'lr': 0.1, 'momentum': 0.9, 'dampening': 0, 'weight_decay': 0, 'nesterov': False}

# state属性输出
defaultdict(<class 'dict'>, {tensor([[-1.3031, -1.1761],
        [-1.7415, -2.5510]], requires_grad=True): {'momentum_buffer': tensor([[0.0052, 0.0052],
        [0.0052, 0.0052]])}})

# param_groups属性输出
[{'lr': 0.1, 'momentum': 0.9, 'dampening': 0, 'weight_decay': 0, 'nesterov': False, 'params': [tensor([[-1.3031, -1.1761],
        [-1.7415, -2.5510]], requires_grad=True)]}, {'lr': 0.0001, 'nesterov': True, 'momentum': 0.9, 'dampening': 0, 'weight_decay': 0, 'params': [tensor([[ 0.4539, -2.1901, -0.6662],
        [ 0.6630, -1.5178, -0.8708],
        [-2.0222,  1.4573,  0.8657]], requires_grad=True)]}]

注意:

  1. 每个优化器都是一个类,我们一定要进行实例化才能使用,比如下方实现:

class Net(nn.Moddule):
    ···
net = Net()
optim = torch.optim.SGD(net.parameters(),lr=lr)
optim.step()
  1. optimizer在一个神经网络的epoch中需要实现下面两个步骤:

    1. 梯度置零

    2. 梯度更新

optimizer = torch.optim.SGD(net.parameters(), lr=1e-5)
for epoch in range(EPOCH):
	...
	optimizer.zero_grad()  #梯度置零
	loss = ...             #计算loss
	loss.backward()        #BP反向传播
	optimizer.step()       #梯度更新
  1. 给网络不同的层赋予不同的优化器参数。

from torch import optim
from torchvision.models import resnet18

net = resnet18()

optimizer = optim.SGD([
    {'params':net.fc.parameters()},#fc的lr使用默认的1e-5
    {'params':net.layer4[0].conv1.parameters(),'lr':1e-2}],lr=1e-5)

# 可以使用param_groups查看属性

3.9.4 实验#

为了更好的帮大家了解优化器,我们对PyTorch中的优化器进行了一个小测试

数据生成

a = torch.linspace(-1, 1, 1000)
# 升维操作
x = torch.unsqueeze(a, dim=1)
y = x.pow(2) + 0.1 * torch.normal(torch.zeros(x.size()))

数据分布曲线

网络结构

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.hidden = nn.Linear(1, 20)
        self.predict = nn.Linear(20, 1)

    def forward(self, x):
        x = self.hidden(x)
        x = F.relu(x)
        x = self.predict(x)
        return x

下面这部分是测试图,纵坐标代表Loss,横坐标代表的是Step:

在上面的图片上,曲线下降的趋势和对应的steps代表了在这轮数据,模型下的收敛速度

注意:

优化器的选择是需要根据模型进行改变的,不存在绝对的好坏之分,我们需要多进行一些测试。