参考文献¶
Abdollahpouri, H., Burke, R., & Mobasher, B. (2017). Controlling popularity bias in learning-to-rank recommendation. Proceedings of the eleventh ACM conference on recommender systems (pp. 42–46).
Barkan, O., & Koenigstein, N. (2016). Item2vec: neural item embedding for collaborative filtering. 2016 IEEE 26th international workshop on machine learning for signal processing (MLSP) (pp. 1–6).
Carbonell, J., & Goldstein, J. (1998). The use of mmr, diversity-based reranking for reordering documents and producing summaries. Proceedings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval (pp. 335–336).
Chen, J., Dong, H., Wang, X., Feng, F., Wang, M., & He, X. (2023). Bias and debias in recommender system: a survey and future directions. ACM Transactions on Information Systems, 41(3), 1–39.
Chen, L., Zhang, G., & Zhou, E. (2018). Fast greedy map inference for determinantal point process to improve recommendation diversity. Advances in Neural Information Processing Systems, 31.
Cheng, H.-T., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., … others. (2016). Wide & deep learning for recommender systems. Proceedings of the 1st workshop on deep learning for recommender systems (pp. 7–10).
Collins, A., Tkaczyk, D., Aizawa, A., & Beel, J. (2018). A study of position bias in digital library recommender systems. arXiv preprint arXiv:1802.06565.
Covington, P., Adams, J., & Sargin, E. (2016). Deep neural networks for youtube recommendations. Proceedings of the 10th ACM conference on recommender systems (pp. 191–198).
Deng, J., Wang, S., Cai, K., Ren, L., Hu, Q., Ding, W., … Zhou, G. (2025). Onerec: unifying retrieve and rank with generative recommender and iterative preference alignment. arXiv preprint arXiv:2502.18965.
Dobrovolny, M., Selamat, A., & Krejcar, O. (2021). Session based recommendations using recurrent neural networks-long short-term memory. Asian Conference on Intelligent Information and Database Systems (pp. 53–65).
Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning and stochastic optimization. Journal of machine learning research, 12(7).
Feng, Y., Gong, Y., Sun, F., Ge, J., & Ou, W. (2021). Revisit recommender system in the permutation prospective. arXiv preprint arXiv:2102.12057.
Feng, Y., Lv, F., Shen, W., Wang, M., Sun, F., Zhu, Y., & Yang, K. (2019). Deep session interest network for click-through rate prediction. arXiv preprint arXiv:1905.06482.
Ferreira, R. N., & Soares, C. (2025). Follow-the-regularized-leader with adversarial constraints. arXiv preprint arXiv:2503.13366.
Firth, J. R. (1957). Studies in Linguistic Analysis. Blackwell.
Funk, S. (2006). Netflix update: try this at home. Blog. URL: https://sifter.org/simon/journal/20061211.html
Goldberg, D., Nichols, D., Oki, B. M., & Terry, D. (1992). Using collaborative filtering to weave an information tapestry. Communications of the ACM, 35(12), 61–70.
Grbovic, M., & Cheng, H. (2018). Real-time personalization using embeddings for search ranking at airbnb. Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 311–320).
Guo, H., Tang, R., Ye, Y., Li, Z., & He, X. (2017). Deepfm: a factorization-machine based neural network for ctr prediction. arXiv preprint arXiv:1703.04247.
Guo, H., Yu, J., Liu, Q., Tang, R., & Zhang, Y. (2019). Pal: a position-bias aware learning framework for ctr prediction in live recommender systems. Proceedings of the 13th ACM Conference on Recommender Systems (pp. 452–456).
Han, R., Yin, B., Chen, S., Jiang, H., Jiang, F., Li, X., … others. (2025). Mtgr: industrial-scale generative recommendation framework in meituan. arXiv preprint arXiv:2505.18654.
He, X., & Chua, T.-S. (2017). Neural factorization machines for sparse predictive analytics. Proceedings of the 40th International ACM SIGIR conference on Research and Development in Information Retrieval (pp. 355–364).
Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-excitation networks. Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7132–7141).
Huang, P.-S., He, X., Gao, J., Deng, L., Acero, A., & Heck, L. (2013). Learning deep structured semantic models for web search using clickthrough data. Proceedings of the 22nd ACM international conference on Information & Knowledge Management (pp. 2333–2338).
Huang, T., Zhang, Z., & Zhang, J. (2019). Fibinet: combining feature importance and bilinear feature interaction for click-through rate prediction. Proceedings of the 13th ACM conference on recommender systems (pp. 169–177).
Huang, Y., Chen, Y., Cao, X., Yang, R., Qi, M., Zhu, Y., … others. (2025). Towards large-scale generative ranking. arXiv preprint arXiv:2505.04180.
Jiang, R., Chiappa, S., Lattimore, T., György, A., & Kohli, P. (2019). Degenerate feedback loops in recommender systems. Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society (pp. 383–390).
Kang, W.-C., & McAuley, J. (2018). Self-attentive sequential recommendation. 2018 IEEE international conference on data mining (ICDM) (pp. 197–206).
Kingma, D. P., & Ba, J. (2014). Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980.
Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems. Computer, 42(8), 30–37.
Krishnan, S., Patel, J., Franklin, M. J., & Goldberg, K. (2014). A methodology for learning, analyzing, and mitigating social influence bias in recommender systems. Proceedings of the 8th ACM Conference on Recommender systems (pp. 137–144).
Li, C., Liu, Z., Wu, M., Xu, Y., Zhao, H., Huang, P., … Lee, D. L. (2019). Multi-interest network with dynamic routing for recommendation at tmall. Proceedings of the 28th ACM international conference on information and knowledge management (pp. 2615–2623).
Lian, J., Zhou, X., Zhang, F., Chen, Z., Xie, X., & Sun, G. (2018). Xdeepfm: combining explicit and implicit feature interactions for recommender systems. Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 1754–1763).
Linden, G., Smith, B., & York, J. (2003). Amazon.com recommendations: item-to-item collaborative filtering. IEEE Internet computing, 7(1), 76–80.
Liu, D. C., Rogers, S., Shiau, R., Kislyuk, D., Ma, K. C., Zhong, Z., … Jing, Y. (2017). Related pins at pinterest: the evolution of a real-world recommender system. Proceedings of the 26th international conference on world wide web companion (pp. 583–592).
Lv, F., Jin, T., Yu, C., Sun, F., Lin, Q., Yang, K., & Ng, W. (2019). Sdm: sequential deep matching model for online large-scale recommender system. Proceedings of the 28th ACM international conference on information and knowledge management (pp. 2635–2643).
Marlin, B., Zemel, R. S., Roweis, S., & Slaney, M. (2012). Collaborative filtering and the missing at random assumption. arXiv preprint arXiv:1206.5267.
Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems, 26.
Pei, C., Zhang, Y., Zhang, Y., Sun, F., Lin, X., Sun, H., … others. (2019). Personalized re-ranking for recommendation. Proceedings of the 13th ACM conference on recommender systems (pp. 3–11).
Qu, Y., Cai, H., Ren, K., Zhang, W., Yu, Y., Wen, Y., & Wang, J. (2016). Product-based neural networks for user response prediction. 2016 IEEE 16th international conference on data mining (ICDM) (pp. 1149–1154).
Rafailov, R., Sharma, A., Mitchell, E., Manning, C. D., Ermon, S., & Finn, C. (2023). Direct preference optimization: your language model is secretly a reward model. Advances in neural information processing systems, 36, 53728–53741.
Raghavan, U. N., Albert, R., & Kumara, S. (2007). Near linear time algorithm to detect community structures in large-scale networks. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 76(3), 036106.
Rajput, S., Mehta, N., Singh, A., Hulikal Keshavan, R., Vu, T., Heldt, L., … others. (2023). Recommender systems with generative retrieval. Advances in Neural Information Processing Systems, 36, 10299–10315.
Rendle, S. (2010). Factorization machines. 2010 IEEE International conference on data mining (pp. 995–1000).
Rendle, S., Freudenthaler, C., & Schmidt-Thieme, L. (2010). Factorizing personalized markov chains for next-basket recommendation. Proceedings of the 19th international conference on World wide web (pp. 811–820).
Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J. (1994). Grouplens: an open architecture for collaborative filtering of netnews. Proceedings of the 1994 ACM conference on Computer supported cooperative work (pp. 175–186).
Richardson, M., Dominowska, E., & Ragno, R. (2007). Predicting clicks: estimating the click-through rate for new ads. Proceedings of the 16th international conference on World Wide Web (pp. 521–530).
Rong, X. (2014). Word2vec parameter learning explained. arXiv preprint arXiv:1411.2738.
Sabour, S., Frosst, N., & Hinton, G. E. (2017). Dynamic routing between capsules. Advances in neural information processing systems, 30.
Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based collaborative filtering recommendation algorithms. Proceedings of the 10th international conference on World Wide Web (pp. 285–295).
Schnabel, T., Swaminathan, A., Singh, A., Chandak, N., & Joachims, T. (2016). Recommendations as treatments: debiasing learning and evaluation. international conference on machine learning (pp. 1670–1679).
Song, W., Shi, C., Xiao, Z., Duan, Z., Xu, Y., Zhang, M., & Tang, J. (2019). Autoint: automatic feature interaction learning via self-attentive neural networks. Proceedings of the 28th ACM international conference on information and knowledge management (pp. 1161–1170).
Steck, H. (2013). Evaluation of recommendations: rating-prediction and ranking. Proceedings of the 7th ACM conference on Recommender systems (pp. 213–220).
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., … Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.
Wang, R., Fu, B., Fu, G., & Wang, M. (2017). Deep & cross network for ad click predictions. Proceedings of the ADKDD'17 (pp. 1–7).
Wang, Y., Ma, W., Zhang, M., Liu, Y., & Ma, S. (2023). A survey on the fairness of recommender systems. ACM Transactions on Information Systems, 41(3), 1–43.
Xiao, J., Ye, H., He, X., Zhang, H., Wu, F., & Chua, T.-S. (2017). Attentional factorization machines: learning the weight of feature interactions via attention networks. arXiv preprint arXiv:1708.04617.
Yang, X., Zhu, Y., Zhang, Y., Wang, X., & Yuan, Q. (2020). Large scale product graph construction for recommendation in e-commerce. arXiv preprint arXiv:2010.05525.
Yi, X., Yang, J., Hong, L., Cheng, D. Z., Heldt, L., Kumthekar, A., … Chi, E. (2019). Sampling-bias-corrected neural modeling for large corpus item recommendations. Proceedings of the 13th ACM conference on recommender systems (pp. 269–277).
Zeghidour, N., Luebs, A., Omran, A., Skoglund, J., & Tagliasacchi, M. (2021). Soundstream: an end-to-end neural audio codec. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 30, 495–507.
Zhai, J., Liao, L., Liu, X., Wang, Y., Li, R., Cao, X., … others. (2024). Actions speak louder than words: trillion-parameter sequential transducers for generative recommendations. arXiv preprint arXiv:2402.17152.
Zhou, G., Mou, N., Fan, Y., Pi, Q., Bian, W., Zhou, C., … Gai, K. (2019). Deep interest evolution network for click-through rate prediction. Proceedings of the AAAI conference on artificial intelligence (pp. 5941–5948).
Zhou, G., Zhu, X., Song, C., Fan, Y., Zhu, H., Ma, X., … Gai, K. (2018). Deep interest network for click-through rate prediction. Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 1059–1068).