参考文献

Abdollahpouri et al., 2017

Abdollahpouri, H., Burke, R., & Mobasher, B. (2017). Controlling popularity bias in learning-to-rank recommendation. Proceedings of the eleventh ACM conference on recommender systems (pp. 42–46).

Barkan & Koenigstein, 2016

Barkan, O., & Koenigstein, N. (2016). Item2vec: neural item embedding for collaborative filtering. 2016 IEEE 26th international workshop on machine learning for signal processing (MLSP) (pp. 1–6).

Carbonell & Goldstein, 1998

Carbonell, J., & Goldstein, J. (1998). The use of mmr, diversity-based reranking for reordering documents and producing summaries. Proceedings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval (pp. 335–336).

Chen et al., 2023

Chen, J., Dong, H., Wang, X., Feng, F., Wang, M., & He, X. (2023). Bias and debias in recommender system: a survey and future directions. ACM Transactions on Information Systems, 41(3), 1–39.

Chen et al., 2018

Chen, L., Zhang, G., & Zhou, E. (2018). Fast greedy map inference for determinantal point process to improve recommendation diversity. Advances in Neural Information Processing Systems, 31.

Cheng et al., 2016

Cheng, H.-T., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., … others. (2016). Wide & deep learning for recommender systems. Proceedings of the 1st workshop on deep learning for recommender systems (pp. 7–10).

Collins et al., 2018

Collins, A., Tkaczyk, D., Aizawa, A., & Beel, J. (2018). A study of position bias in digital library recommender systems. arXiv preprint arXiv:1802.06565.

Covington et al., 2016

Covington, P., Adams, J., & Sargin, E. (2016). Deep neural networks for youtube recommendations. Proceedings of the 10th ACM conference on recommender systems (pp. 191–198).

Deng et al., 2025

Deng, J., Wang, S., Cai, K., Ren, L., Hu, Q., Ding, W., … Zhou, G. (2025). Onerec: unifying retrieve and rank with generative recommender and iterative preference alignment. arXiv preprint arXiv:2502.18965.

Dobrovolny et al., 2021

Dobrovolny, M., Selamat, A., & Krejcar, O. (2021). Session based recommendations using recurrent neural networks-long short-term memory. Asian Conference on Intelligent Information and Database Systems (pp. 53–65).

Duchi et al., 2011

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning and stochastic optimization. Journal of machine learning research, 12(7).

Feng et al., 2021

Feng, Y., Gong, Y., Sun, F., Ge, J., & Ou, W. (2021). Revisit recommender system in the permutation prospective. arXiv preprint arXiv:2102.12057.

Feng et al., 2019

Feng, Y., Lv, F., Shen, W., Wang, M., Sun, F., Zhu, Y., & Yang, K. (2019). Deep session interest network for click-through rate prediction. arXiv preprint arXiv:1905.06482.

Ferreira & Soares, 2025

Ferreira, R. N., & Soares, C. (2025). Follow-the-regularized-leader with adversarial constraints. arXiv preprint arXiv:2503.13366.

Firth, 1957

Firth, J. R. (1957). Studies in Linguistic Analysis. Blackwell.

Funk, 2006

Funk, S. (2006). Netflix update: try this at home. Blog. URL: https://sifter.org/simon/journal/20061211.html

Goldberg et al., 1992

Goldberg, D., Nichols, D., Oki, B. M., & Terry, D. (1992). Using collaborative filtering to weave an information tapestry. Communications of the ACM, 35(12), 61–70.

Grbovic & Cheng, 2018

Grbovic, M., & Cheng, H. (2018). Real-time personalization using embeddings for search ranking at airbnb. Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 311–320).

Guo et al., 2017

Guo, H., Tang, R., Ye, Y., Li, Z., & He, X. (2017). Deepfm: a factorization-machine based neural network for ctr prediction. arXiv preprint arXiv:1703.04247.

Guo et al., 2019

Guo, H., Yu, J., Liu, Q., Tang, R., & Zhang, Y. (2019). Pal: a position-bias aware learning framework for ctr prediction in live recommender systems. Proceedings of the 13th ACM Conference on Recommender Systems (pp. 452–456).

Han et al., 2025

Han, R., Yin, B., Chen, S., Jiang, H., Jiang, F., Li, X., … others. (2025). Mtgr: industrial-scale generative recommendation framework in meituan. arXiv preprint arXiv:2505.18654.

He & Chua, 2017

He, X., & Chua, T.-S. (2017). Neural factorization machines for sparse predictive analytics. Proceedings of the 40th International ACM SIGIR conference on Research and Development in Information Retrieval (pp. 355–364).

Hu et al., 2018

Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-excitation networks. Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7132–7141).

Huang et al., 2013

Huang, P.-S., He, X., Gao, J., Deng, L., Acero, A., & Heck, L. (2013). Learning deep structured semantic models for web search using clickthrough data. Proceedings of the 22nd ACM international conference on Information & Knowledge Management (pp. 2333–2338).

Huang et al., 2019

Huang, T., Zhang, Z., & Zhang, J. (2019). Fibinet: combining feature importance and bilinear feature interaction for click-through rate prediction. Proceedings of the 13th ACM conference on recommender systems (pp. 169–177).

Huang et al., 2025

Huang, Y., Chen, Y., Cao, X., Yang, R., Qi, M., Zhu, Y., … others. (2025). Towards large-scale generative ranking. arXiv preprint arXiv:2505.04180.

Jiang et al., 2019

Jiang, R., Chiappa, S., Lattimore, T., György, A., & Kohli, P. (2019). Degenerate feedback loops in recommender systems. Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society (pp. 383–390).

Kang & McAuley, 2018

Kang, W.-C., & McAuley, J. (2018). Self-attentive sequential recommendation. 2018 IEEE international conference on data mining (ICDM) (pp. 197–206).

Kingma & Ba, 2014

Kingma, D. P., & Ba, J. (2014). Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980.

Koren et al., 2009

Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems. Computer, 42(8), 30–37.

Krishnan et al., 2014

Krishnan, S., Patel, J., Franklin, M. J., & Goldberg, K. (2014). A methodology for learning, analyzing, and mitigating social influence bias in recommender systems. Proceedings of the 8th ACM Conference on Recommender systems (pp. 137–144).

Li et al., 2019

Li, C., Liu, Z., Wu, M., Xu, Y., Zhao, H., Huang, P., … Lee, D. L. (2019). Multi-interest network with dynamic routing for recommendation at tmall. Proceedings of the 28th ACM international conference on information and knowledge management (pp. 2615–2623).

Lian et al., 2018

Lian, J., Zhou, X., Zhang, F., Chen, Z., Xie, X., & Sun, G. (2018). Xdeepfm: combining explicit and implicit feature interactions for recommender systems. Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 1754–1763).

Linden et al., 2003

Linden, G., Smith, B., & York, J. (2003). Amazon.com recommendations: item-to-item collaborative filtering. IEEE Internet computing, 7(1), 76–80.

Liu et al., 2017

Liu, D. C., Rogers, S., Shiau, R., Kislyuk, D., Ma, K. C., Zhong, Z., … Jing, Y. (2017). Related pins at pinterest: the evolution of a real-world recommender system. Proceedings of the 26th international conference on world wide web companion (pp. 583–592).

Lv et al., 2019

Lv, F., Jin, T., Yu, C., Sun, F., Lin, Q., Yang, K., & Ng, W. (2019). Sdm: sequential deep matching model for online large-scale recommender system. Proceedings of the 28th ACM international conference on information and knowledge management (pp. 2635–2643).

Marlin et al., 2012

Marlin, B., Zemel, R. S., Roweis, S., & Slaney, M. (2012). Collaborative filtering and the missing at random assumption. arXiv preprint arXiv:1206.5267.

Mikolov et al., 2013

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems, 26.

Pei et al., 2019

Pei, C., Zhang, Y., Zhang, Y., Sun, F., Lin, X., Sun, H., … others. (2019). Personalized re-ranking for recommendation. Proceedings of the 13th ACM conference on recommender systems (pp. 3–11).

Qu et al., 2016

Qu, Y., Cai, H., Ren, K., Zhang, W., Yu, Y., Wen, Y., & Wang, J. (2016). Product-based neural networks for user response prediction. 2016 IEEE 16th international conference on data mining (ICDM) (pp. 1149–1154).

Rafailov et al., 2023

Rafailov, R., Sharma, A., Mitchell, E., Manning, C. D., Ermon, S., & Finn, C. (2023). Direct preference optimization: your language model is secretly a reward model. Advances in neural information processing systems, 36, 53728–53741.

Raghavan et al., 2007

Raghavan, U. N., Albert, R., & Kumara, S. (2007). Near linear time algorithm to detect community structures in large-scale networks. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 76(3), 036106.

Rajput et al., 2023

Rajput, S., Mehta, N., Singh, A., Hulikal Keshavan, R., Vu, T., Heldt, L., … others. (2023). Recommender systems with generative retrieval. Advances in Neural Information Processing Systems, 36, 10299–10315.

Rendle, 2010

Rendle, S. (2010). Factorization machines. 2010 IEEE International conference on data mining (pp. 995–1000).

Rendle et al., 2010

Rendle, S., Freudenthaler, C., & Schmidt-Thieme, L. (2010). Factorizing personalized markov chains for next-basket recommendation. Proceedings of the 19th international conference on World wide web (pp. 811–820).

Resnick et al., 1994

Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J. (1994). Grouplens: an open architecture for collaborative filtering of netnews. Proceedings of the 1994 ACM conference on Computer supported cooperative work (pp. 175–186).

Richardson et al., 2007

Richardson, M., Dominowska, E., & Ragno, R. (2007). Predicting clicks: estimating the click-through rate for new ads. Proceedings of the 16th international conference on World Wide Web (pp. 521–530).

Rong, 2014

Rong, X. (2014). Word2vec parameter learning explained. arXiv preprint arXiv:1411.2738.

Sabour et al., 2017

Sabour, S., Frosst, N., & Hinton, G. E. (2017). Dynamic routing between capsules. Advances in neural information processing systems, 30.

Sarwar et al., 2001

Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based collaborative filtering recommendation algorithms. Proceedings of the 10th international conference on World Wide Web (pp. 285–295).

Schnabel et al., 2016

Schnabel, T., Swaminathan, A., Singh, A., Chandak, N., & Joachims, T. (2016). Recommendations as treatments: debiasing learning and evaluation. international conference on machine learning (pp. 1670–1679).

Song et al., 2019

Song, W., Shi, C., Xiao, Z., Duan, Z., Xu, Y., Zhang, M., & Tang, J. (2019). Autoint: automatic feature interaction learning via self-attentive neural networks. Proceedings of the 28th ACM international conference on information and knowledge management (pp. 1161–1170).

Steck, 2013

Steck, H. (2013). Evaluation of recommendations: rating-prediction and ranking. Proceedings of the 7th ACM conference on Recommender systems (pp. 213–220).

Vaswani et al., 2017

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., … Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.

Wang et al., 2017

Wang, R., Fu, B., Fu, G., & Wang, M. (2017). Deep & cross network for ad click predictions. Proceedings of the ADKDD'17 (pp. 1–7).

Wang et al., 2023

Wang, Y., Ma, W., Zhang, M., Liu, Y., & Ma, S. (2023). A survey on the fairness of recommender systems. ACM Transactions on Information Systems, 41(3), 1–43.

Xiao et al., 2017

Xiao, J., Ye, H., He, X., Zhang, H., Wu, F., & Chua, T.-S. (2017). Attentional factorization machines: learning the weight of feature interactions via attention networks. arXiv preprint arXiv:1708.04617.

Yang et al., 2020

Yang, X., Zhu, Y., Zhang, Y., Wang, X., & Yuan, Q. (2020). Large scale product graph construction for recommendation in e-commerce. arXiv preprint arXiv:2010.05525.

Yi et al., 2019

Yi, X., Yang, J., Hong, L., Cheng, D. Z., Heldt, L., Kumthekar, A., … Chi, E. (2019). Sampling-bias-corrected neural modeling for large corpus item recommendations. Proceedings of the 13th ACM conference on recommender systems (pp. 269–277).

Zeghidour et al., 2021

Zeghidour, N., Luebs, A., Omran, A., Skoglund, J., & Tagliasacchi, M. (2021). Soundstream: an end-to-end neural audio codec. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 30, 495–507.

Zhai et al., 2024

Zhai, J., Liao, L., Liu, X., Wang, Y., Li, R., Cao, X., … others. (2024). Actions speak louder than words: trillion-parameter sequential transducers for generative recommendations. arXiv preprint arXiv:2402.17152.

Zhou et al., 2019

Zhou, G., Mou, N., Fan, Y., Pi, Q., Bian, W., Zhou, C., … Gai, K. (2019). Deep interest evolution network for click-through rate prediction. Proceedings of the AAAI conference on artificial intelligence (pp. 5941–5948).

Zhou et al., 2018

Zhou, G., Zhu, X., Song, C., Fan, Y., Zhu, H., Ma, X., … Gai, K. (2018). Deep interest network for click-through rate prediction. Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 1059–1068).