参考文献¶
- Abdollahpouri et al., 2017
Abdollahpouri, H., Burke, R., & Mobasher, B. (2017). Controlling popularity bias in learning-to-rank recommendation. Proceedings of the eleventh ACM conference on recommender systems (pp. 42–46).
- Barkan & Koenigstein, 2016
Barkan, O., & Koenigstein, N. (2016). Item2vec: neural item embedding for collaborative filtering. 2016 IEEE 26th international workshop on machine learning for signal processing (MLSP) (pp. 1–6).
- Carbonell & Goldstein, 1998
Carbonell, J., & Goldstein, J. (1998). The use of mmr, diversity-based reranking for reordering documents and producing summaries. Proceedings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval (pp. 335–336).
- Chen et al., 2023
Chen, J., Dong, H., Wang, X., Feng, F., Wang, M., & He, X. (2023). Bias and debias in recommender system: a survey and future directions. ACM Transactions on Information Systems, 41(3), 1–39.
- Chen et al., 2018
Chen, L., Zhang, G., & Zhou, E. (2018). Fast greedy map inference for determinantal point process to improve recommendation diversity. Advances in Neural Information Processing Systems, 31.
- Cheng et al., 2016
Cheng, H.-T., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., … others. (2016). Wide & deep learning for recommender systems. Proceedings of the 1st workshop on deep learning for recommender systems (pp. 7–10).
- Collins et al., 2018
Collins, A., Tkaczyk, D., Aizawa, A., & Beel, J. (2018). A study of position bias in digital library recommender systems. arXiv preprint arXiv:1802.06565.
- Covington et al., 2016
Covington, P., Adams, J., & Sargin, E. (2016). Deep neural networks for youtube recommendations. Proceedings of the 10th ACM conference on recommender systems (pp. 191–198).
- Deng et al., 2025
Deng, J., Wang, S., Cai, K., Ren, L., Hu, Q., Ding, W., … Zhou, G. (2025). Onerec: unifying retrieve and rank with generative recommender and iterative preference alignment. arXiv preprint arXiv:2502.18965.
- Dobrovolny et al., 2021
Dobrovolny, M., Selamat, A., & Krejcar, O. (2021). Session based recommendations using recurrent neural networks-long short-term memory. Asian Conference on Intelligent Information and Database Systems (pp. 53–65).
- Duchi et al., 2011
Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning and stochastic optimization. Journal of machine learning research, 12(7).
- Feng et al., 2021
Feng, Y., Gong, Y., Sun, F., Ge, J., & Ou, W. (2021). Revisit recommender system in the permutation prospective. arXiv preprint arXiv:2102.12057.
- Feng et al., 2019
Feng, Y., Lv, F., Shen, W., Wang, M., Sun, F., Zhu, Y., & Yang, K. (2019). Deep session interest network for click-through rate prediction. arXiv preprint arXiv:1905.06482.
- Ferreira & Soares, 2025
Ferreira, R. N., & Soares, C. (2025). Follow-the-regularized-leader with adversarial constraints. arXiv preprint arXiv:2503.13366.
- Firth, 1957
Firth, J. R. (1957). Studies in Linguistic Analysis. Blackwell.
- Funk, 2006
Funk, S. (2006). Netflix update: try this at home. Blog. URL: https://sifter.org/simon/journal/20061211.html
- Goldberg et al., 1992
Goldberg, D., Nichols, D., Oki, B. M., & Terry, D. (1992). Using collaborative filtering to weave an information tapestry. Communications of the ACM, 35(12), 61–70.
- Grbovic & Cheng, 2018
Grbovic, M., & Cheng, H. (2018). Real-time personalization using embeddings for search ranking at airbnb. Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 311–320).
- Guo et al., 2017
Guo, H., Tang, R., Ye, Y., Li, Z., & He, X. (2017). Deepfm: a factorization-machine based neural network for ctr prediction. arXiv preprint arXiv:1703.04247.
- Guo et al., 2019
Guo, H., Yu, J., Liu, Q., Tang, R., & Zhang, Y. (2019). Pal: a position-bias aware learning framework for ctr prediction in live recommender systems. Proceedings of the 13th ACM Conference on Recommender Systems (pp. 452–456).
- Han et al., 2025
Han, R., Yin, B., Chen, S., Jiang, H., Jiang, F., Li, X., … others. (2025). Mtgr: industrial-scale generative recommendation framework in meituan. arXiv preprint arXiv:2505.18654.
- He & Chua, 2017
He, X., & Chua, T.-S. (2017). Neural factorization machines for sparse predictive analytics. Proceedings of the 40th International ACM SIGIR conference on Research and Development in Information Retrieval (pp. 355–364).
- Hu et al., 2018
Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-excitation networks. Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7132–7141).
- Huang et al., 2013
Huang, P.-S., He, X., Gao, J., Deng, L., Acero, A., & Heck, L. (2013). Learning deep structured semantic models for web search using clickthrough data. Proceedings of the 22nd ACM international conference on Information & Knowledge Management (pp. 2333–2338).
- Huang et al., 2019
Huang, T., Zhang, Z., & Zhang, J. (2019). Fibinet: combining feature importance and bilinear feature interaction for click-through rate prediction. Proceedings of the 13th ACM conference on recommender systems (pp. 169–177).
- Huang et al., 2025
Huang, Y., Chen, Y., Cao, X., Yang, R., Qi, M., Zhu, Y., … others. (2025). Towards large-scale generative ranking. arXiv preprint arXiv:2505.04180.
- Jiang et al., 2019
Jiang, R., Chiappa, S., Lattimore, T., György, A., & Kohli, P. (2019). Degenerate feedback loops in recommender systems. Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society (pp. 383–390).
- Kang & McAuley, 2018
Kang, W.-C., & McAuley, J. (2018). Self-attentive sequential recommendation. 2018 IEEE international conference on data mining (ICDM) (pp. 197–206).
- Kingma & Ba, 2014
Kingma, D. P., & Ba, J. (2014). Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980.
- Koren et al., 2009
Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems. Computer, 42(8), 30–37.
- Krishnan et al., 2014
Krishnan, S., Patel, J., Franklin, M. J., & Goldberg, K. (2014). A methodology for learning, analyzing, and mitigating social influence bias in recommender systems. Proceedings of the 8th ACM Conference on Recommender systems (pp. 137–144).
- Li et al., 2019
Li, C., Liu, Z., Wu, M., Xu, Y., Zhao, H., Huang, P., … Lee, D. L. (2019). Multi-interest network with dynamic routing for recommendation at tmall. Proceedings of the 28th ACM international conference on information and knowledge management (pp. 2615–2623).
- Lian et al., 2018
Lian, J., Zhou, X., Zhang, F., Chen, Z., Xie, X., & Sun, G. (2018). Xdeepfm: combining explicit and implicit feature interactions for recommender systems. Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 1754–1763).
- Linden et al., 2003
Linden, G., Smith, B., & York, J. (2003). Amazon.com recommendations: item-to-item collaborative filtering. IEEE Internet computing, 7(1), 76–80.
- Liu et al., 2017
Liu, D. C., Rogers, S., Shiau, R., Kislyuk, D., Ma, K. C., Zhong, Z., … Jing, Y. (2017). Related pins at pinterest: the evolution of a real-world recommender system. Proceedings of the 26th international conference on world wide web companion (pp. 583–592).
- Lv et al., 2019
Lv, F., Jin, T., Yu, C., Sun, F., Lin, Q., Yang, K., & Ng, W. (2019). Sdm: sequential deep matching model for online large-scale recommender system. Proceedings of the 28th ACM international conference on information and knowledge management (pp. 2635–2643).
- Marlin et al., 2012
Marlin, B., Zemel, R. S., Roweis, S., & Slaney, M. (2012). Collaborative filtering and the missing at random assumption. arXiv preprint arXiv:1206.5267.
- Mikolov et al., 2013
Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems, 26.
- Pei et al., 2019
Pei, C., Zhang, Y., Zhang, Y., Sun, F., Lin, X., Sun, H., … others. (2019). Personalized re-ranking for recommendation. Proceedings of the 13th ACM conference on recommender systems (pp. 3–11).
- Qu et al., 2016
Qu, Y., Cai, H., Ren, K., Zhang, W., Yu, Y., Wen, Y., & Wang, J. (2016). Product-based neural networks for user response prediction. 2016 IEEE 16th international conference on data mining (ICDM) (pp. 1149–1154).
- Rafailov et al., 2023
Rafailov, R., Sharma, A., Mitchell, E., Manning, C. D., Ermon, S., & Finn, C. (2023). Direct preference optimization: your language model is secretly a reward model. Advances in neural information processing systems, 36, 53728–53741.
- Raghavan et al., 2007
Raghavan, U. N., Albert, R., & Kumara, S. (2007). Near linear time algorithm to detect community structures in large-scale networks. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 76(3), 036106.
- Rajput et al., 2023
Rajput, S., Mehta, N., Singh, A., Hulikal Keshavan, R., Vu, T., Heldt, L., … others. (2023). Recommender systems with generative retrieval. Advances in Neural Information Processing Systems, 36, 10299–10315.
- Rendle, 2010
Rendle, S. (2010). Factorization machines. 2010 IEEE International conference on data mining (pp. 995–1000).
- Rendle et al., 2010
Rendle, S., Freudenthaler, C., & Schmidt-Thieme, L. (2010). Factorizing personalized markov chains for next-basket recommendation. Proceedings of the 19th international conference on World wide web (pp. 811–820).
- Resnick et al., 1994
Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J. (1994). Grouplens: an open architecture for collaborative filtering of netnews. Proceedings of the 1994 ACM conference on Computer supported cooperative work (pp. 175–186).
- Richardson et al., 2007
Richardson, M., Dominowska, E., & Ragno, R. (2007). Predicting clicks: estimating the click-through rate for new ads. Proceedings of the 16th international conference on World Wide Web (pp. 521–530).
- Rong, 2014
Rong, X. (2014). Word2vec parameter learning explained. arXiv preprint arXiv:1411.2738.
- Sabour et al., 2017
Sabour, S., Frosst, N., & Hinton, G. E. (2017). Dynamic routing between capsules. Advances in neural information processing systems, 30.
- Sarwar et al., 2001
Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based collaborative filtering recommendation algorithms. Proceedings of the 10th international conference on World Wide Web (pp. 285–295).
- Schnabel et al., 2016
Schnabel, T., Swaminathan, A., Singh, A., Chandak, N., & Joachims, T. (2016). Recommendations as treatments: debiasing learning and evaluation. international conference on machine learning (pp. 1670–1679).
- Song et al., 2019
Song, W., Shi, C., Xiao, Z., Duan, Z., Xu, Y., Zhang, M., & Tang, J. (2019). Autoint: automatic feature interaction learning via self-attentive neural networks. Proceedings of the 28th ACM international conference on information and knowledge management (pp. 1161–1170).
- Steck, 2013
Steck, H. (2013). Evaluation of recommendations: rating-prediction and ranking. Proceedings of the 7th ACM conference on Recommender systems (pp. 213–220).
- Vaswani et al., 2017
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., … Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.
- Wang et al., 2017
Wang, R., Fu, B., Fu, G., & Wang, M. (2017). Deep & cross network for ad click predictions. Proceedings of the ADKDD'17 (pp. 1–7).
- Wang et al., 2023
Wang, Y., Ma, W., Zhang, M., Liu, Y., & Ma, S. (2023). A survey on the fairness of recommender systems. ACM Transactions on Information Systems, 41(3), 1–43.
- Xiao et al., 2017
Xiao, J., Ye, H., He, X., Zhang, H., Wu, F., & Chua, T.-S. (2017). Attentional factorization machines: learning the weight of feature interactions via attention networks. arXiv preprint arXiv:1708.04617.
- Yang et al., 2020
Yang, X., Zhu, Y., Zhang, Y., Wang, X., & Yuan, Q. (2020). Large scale product graph construction for recommendation in e-commerce. arXiv preprint arXiv:2010.05525.
- Yi et al., 2019
Yi, X., Yang, J., Hong, L., Cheng, D. Z., Heldt, L., Kumthekar, A., … Chi, E. (2019). Sampling-bias-corrected neural modeling for large corpus item recommendations. Proceedings of the 13th ACM conference on recommender systems (pp. 269–277).
- Zeghidour et al., 2021
Zeghidour, N., Luebs, A., Omran, A., Skoglund, J., & Tagliasacchi, M. (2021). Soundstream: an end-to-end neural audio codec. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 30, 495–507.
- Zhai et al., 2024
Zhai, J., Liao, L., Liu, X., Wang, Y., Li, R., Cao, X., … others. (2024). Actions speak louder than words: trillion-parameter sequential transducers for generative recommendations. arXiv preprint arXiv:2402.17152.
- Zhou et al., 2019
Zhou, G., Mou, N., Fan, Y., Pi, Q., Bian, W., Zhou, C., … Gai, K. (2019). Deep interest evolution network for click-through rate prediction. Proceedings of the AAAI conference on artificial intelligence (pp. 5941–5948).
- Zhou et al., 2018
Zhou, G., Zhu, X., Song, C., Fan, Y., Zhu, H., Ma, X., … Gai, K. (2018). Deep interest network for click-through rate prediction. Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 1059–1068).